A PROOF OF $\mathrm{P}=\mathrm{NP}$

VICTOR PORTON

Abstract. My proof that $\mathrm{P}=\mathrm{NP}$.

1. Introduction

Fix any non-contradictory formal system, containing first-order predicate calculus (such as first-order predicate calculus or ZFC). Note that our formal system can be used to prove correctness of its own proofs (in polynomial time).

In this article I use the word "proof" exclusively either to denote proofs in our formal systems or to denote the proof presented in this article. I do not use it as a synonym of "certificate". (However, certificates used are proofs.)

2. PROOF

I will call an NP-complete verifier an algorithm that verifies an NPcomplete problem in polynomial time.

Obviously, if $\mathrm{P}=\mathrm{NP}$, then there exists some NP-complete verifier.
Let $R(X)$ be the property, whether an arbitrary algorithm X (that takes any input data Y) produces a proof (in our formal system) of the statement (for every algorithm Y)

$$
\begin{equation*}
X(Y)=Z \Rightarrow \exists \text { algorithm } X^{\prime}: X^{\prime}(Z)=Y \tag{1}
\end{equation*}
$$

I remind: X is in NP means that (for every Y)

$$
\begin{equation*}
X(Y)=Z \Rightarrow \exists \text { polynomial-time algorithm } X^{\prime}: X^{\prime}(Z)=Y \tag{2}
\end{equation*}
$$

Let for either $R(X)$ or $\neg R(X)$ we have ϕ transforms X into a proof of the theorem (1) or of its negation.

Proposition 1. If X is in NP, then $R(\phi X)$.
Proof. If X is in NP, then (2), therefore (1), therefore $R(\phi X)$.
In the usual definition Z is taken to be one bit, but we could instead allow Z to be any polynomial amount of data, without changing concepts of R and of NP-complete.

Lemma 1. $R \circ \phi$ is an NP-complete problem for all algorithms X such that either $R(X)$ or $\neg R(X)$ is provable.

Proof. ϕ preserves all information about $X ; R$ is NP-complete because it subsumes finding proofs by taking Y to be a statement to be proved and X being a proof-finding algorithm (as the last step of $(\phi X)(Y)$ is a theorem about the value of $X(Y)$ that is it contains a proof of $Y)$.

In the standard definition of NP we have the additional condition at the left side of the implication that $Z=$ true. But let us limit further consideration to such problems that either $R(X)$ or $\neg R(X)$ is provable; then we consider $Z \in\{$ false, true $\}$.)
Theorem 1. $\mathrm{P}=\mathrm{NP}$.
Proof. $R \circ \phi$ is an NP-complete problem for all algorithms X such that either $R(X)$ or $\neg R(X)$ is provable.

So, there is an algorithm I in NP for this problem.
Let $I(X)=Z$.
Therefore there exists a polynomial-time I^{\prime} (independent of X) in P such that $I^{\prime}(Z)=X$. Applying I^{\prime} to an input data is a problem in $\mathrm{P} \subseteq \mathrm{NP}$. Therefore applying my definition again we get that there is a polynomial time algorithm $I^{\prime \prime}$ (independent of X) such that $I^{\prime \prime}(X)=Z . I^{\prime \prime}$ is a polynomialtime algorithm for our NP-complete problem.

The above solution is constructive, for example, by my previous article.

References

[1] Porton, Victor. "It Seems, I Proved $\mathrm{P}=\mathrm{NP}=>$ I Have an NP-complete Algorithm." Reddit. April 6, 2021. Accessed April 07, 2021. https://www.reddit.com/ r/algorithms/comments/ml85dv/it_seems_i_proved_pnp_i_have_an_npcomplete/ Forum r/algorithms
[2] Porton, Victor. "If $\mathrm{P}=\mathrm{NP}$, then I have an NP-complete verifier (second proof attempt)." Reddit. April 6, 2021. Accessed April 07, 2021.https://www.reddit.com/ r/algorithms/comments/ml85dv/it_seems_i_proved_pnp_i_have_an_npcomplete/ Forum r/algorithms
[3] Wu, William. "Topic: NONCONSTRUCTIVE P=NP." Wu :: Forums. September 9, 2002. Accessed April 07, 2021. https://www.ocf.berkeleyhttps: //www.ocf.berkeley.edu/~wwu/cgi-bin/yabb/YaBB.cgi?board=riddles_cs; action=display;num=1031609156
[4] TODO
Email address: porton@narod.ru

