A PROOF OF P = NP

VICTOR PORTON

ABSTRACT. My proof that P = NP.

1. INTRODUCTION

Fix any non-contradictory formal system, containing first-order predicate calculus (such as first-order predicate calculus or ZFC). Note that our formal system can be used to prove correctness of its own proofs (in polynomial time).

In this article I use the word "proof" exclusively either to denote proofs in our formal systems or to denote the proof presented in this article. I do not use it as a synonym of "certificate". (However, certificates used are proofs.)

2. Proof

I will call an NP-complete verifier an algorithm that verifies an NP-complete problem in polynomial time.

Obviously, if P = NP, then there exists some NP-complete verifier.

Let R(X) be the property, whether an arbitrary algorithm X (that takes any input data Y) produces a proof (in our formal system) of the statement (for every algorithm Y)

(1)
$$X(Y) = Z \Rightarrow \exists algorithm X' : X'(Z) = Y.$$

I remind: X is in NP means that (for every Y)

(2) $X(Y) = Z \Rightarrow \exists polynomial-time algorithm X' : X'(Z) = Y.$

Let for either R(X) or $\neg R(X)$ we have ϕ transforms X into a proof of the theorem (1) or of its negation.

Proposition 1. If X is in NP, then $R(\phi X)$.

Proof. If X is in NP, then (2), therefore (1), therefore $R(\phi X)$.

In the usual definition Z is taken to be one bit, but we could instead allow Z to be any polynomial amount of data, without changing concepts of R and of NP-complete.

Lemma 1. $R \circ \phi$ is an NP-complete problem for all algorithms X such that either R(X) or $\neg R(X)$ is provable.

VICTOR PORTON

Proof. ϕ preserves all information about X; R is NP-complete because it subsumes finding proofs by taking Y to be a statement to be proved and X being a proof-finding algorithm (as the last step of $(\phi X)(Y)$ is a theorem about the value of X(Y) that is it contains a proof of Y).

In the standard definition of NP we have the additional condition at the left side of the implication that Z = true. But let us limit further consideration to such problems that either R(X) or $\neg R(X)$ is provable; then we consider $Z \in \{\text{false, true}\}$.)

Theorem 1. P = NP.

Proof. $R \circ \phi$ is an NP-complete problem for all algorithms X such that either R(X) or $\neg R(X)$ is provable.

So, there is an algorithm I in NP for this problem.

Let I(X) = Z.

Therefore there exists a polynomial-time I' (independent of X) in P such that I'(Z) = X. Applying I' to an input data is a problem in $P \subseteq NP$. Therefore applying my definition again we get that there is a polynomial time algorithm I'' (independent of X) such that I''(X) = Z. I'' is a polynomial-time algorithm for our NP-complete problem.

The above solution is constructive, for example, by my previous article.

References

- Porton, Victor. "It Seems, I Proved P=NP => I Have an NP-complete Algorithm." Reddit. April 6, 2021. Accessed April 07, 2021. https://www.reddit.com/r/algorithms/comments/ml85dv/it_seems_i_proved_pnp_i_have_an_npcomplete/. Forum r/algorithms
- [2] Porton, Victor. "If P=NP, then I have an NP-complete verifier (second proof attempt)." Reddit. April 6, 2021. Accessed April 07, 2021. https://www.reddit.com/ r/algorithms/comments/ml85dv/it_seems_i_proved_pnp_i_have_an_npcomplete/. Forum r/algorithms
- [3] Wu, William. "Topic: NONCONSTRUCTIVE P=NP." Wu :: Forums. September 9, 2002. Accessed April 07, 2021. https://www.ocf.berkeleyhttps: //www.ocf.berkeley.edu/~wwu/cgi-bin/yabb/YaBB.cgi?board=riddles_cs; action=display;num=1031609156.

Email address: porton@narod.ru

 $\mathbf{2}$

^[4] TODO