
A PROOF OF P = NP

VICTOR PORTON

Abstract. My proof that P = NP.

1. Introduction

Fix any non-contradictory formal system, containing first-order predicate
calculus (such as first-order predicate calculus or ZFC). Note that our formal
system can be used to prove correctness of its own proofs (in polynomial
time).

In this article I use the word “proof” exclusively either to denote proofs in
our formal systems or to denote the proof presented in this article. I do not
use it as a synonym of “certificate”. (However, certificates used are proofs.)

2. Proof

I will call an NP-complete verifier an algorithm that verifies an NP-
complete problem in polynomial time.

Obviously, if P = NP, then there exists some NP-complete verifier.
Let R(X) be the property, whether an arbitrary algorithm X (that takes

any input data Y ) produces a proof (in our formal system) of the statement
(for every algorithm Y )

(1) X(Y ) = Z ⇒ ∃algorithm X ′ : X ′(Z) = Y.

I remind: X is in NP means that (for every Y )

(2) X(Y ) = Z ⇒ ∃polynomial-time algorithm X ′ : X ′(Z) = Y.

Let for either R(X) or ¬R(X) we have φ transforms X into a proof of
the theorem (1) or of its negation.

Proposition 1. If X is in NP, then R(φX).

Proof. If X is in NP, then (2), therefore (1), therefore R(φX). �

In the usual definition Z is taken to be one bit, but we could instead
allow Z to be any polynomial amount of data, without changing concepts
of R and of NP-complete.

Lemma 1. R ◦φ is an NP-complete problem for all algorithms X such that
either R(X) or ¬R(X) is provable.

1



2 VICTOR PORTON

Proof. φ preserves all information about X; R is NP-complete because it
subsumes finding proofs by taking Y to be a statement to be proved and
X being a proof-finding algorithm (as the last step of (φX)(Y ) is a theorem
about the value of X(Y ) that is it contains a proof of Y ). �

In the standard definition of NP we have the additional condition at
the left side of the implication that Z = true. But let us limit further
consideration to such problems that either R(X) or ¬R(X) is provable;
then we consider Z ∈ {false, true}.)

Theorem 1. P = NP.

Proof. R◦φ is an NP-complete problem for all algorithms X such that either
R(X) or ¬R(X) is provable.

So, there is an algorithm I in NP for this problem.
Let I(X) = Z.
Therefore there exists a polynomial-time I ′ (independent of X) in P such

that I ′(Z) = X. Applying I ′ to an input data is a problem in P ⊆ NP.
Therefore applying my definition again we get that there is a polynomial time
algorithm I ′′ (independent of X) such that I ′′(X) = Z. I ′′ is a polynomial-
time algorithm for our NP-complete problem. �

The above solution is constructive, for example, by my previous article.

References

[1] Porton, Victor. “It Seems, I Proved P=NP => I Have an NP-complete Algo-
rithm.” Reddit. April 6, 2021. Accessed April 07, 2021. https://www.reddit.com/

r/algorithms/comments/ml85dv/it_seems_i_proved_pnp_i_have_an_npcomplete/.
Forum r/algorithms

[2] Porton, Victor. “If P=NP, then I have an NP-complete verifier (second proof
attempt).” Reddit. April 6, 2021. Accessed April 07, 2021. https://www.reddit.com/
r/algorithms/comments/ml85dv/it_seems_i_proved_pnp_i_have_an_npcomplete/.
Forum r/algorithms

[3] Wu, William. ”Topic: NONCONSTRUCTIVE P=NP.” Wu :: Forums. Sep-
tember 9, 2002. Accessed April 07, 2021. https://www.ocf.berkeleyhttps:

//www.ocf.berkeley.edu/~wwu/cgi-bin/yabb/YaBB.cgi?board=riddles_cs;

action=display;num=1031609156.
[4] TODO

Email address: porton@narod.ru

https://www.reddit.com/r/algorithms/comments/ml85dv/it_seems_i_proved_pnp_i_have_an_npcomplete/
https://www.reddit.com/r/algorithms/comments/ml85dv/it_seems_i_proved_pnp_i_have_an_npcomplete/
https://www.reddit.com/r/algorithms/comments/ml85dv/it_seems_i_proved_pnp_i_have_an_npcomplete/
https://www.reddit.com/r/algorithms/comments/ml85dv/it_seems_i_proved_pnp_i_have_an_npcomplete/
https://www.ocf.berkeleyhttps://www.ocf.berkeley.edu/~wwu/cgi-bin/yabb/YaBB.cgi?board=riddles_cs;action=display;num=1031609156
https://www.ocf.berkeleyhttps://www.ocf.berkeley.edu/~wwu/cgi-bin/yabb/YaBB.cgi?board=riddles_cs;action=display;num=1031609156
https://www.ocf.berkeleyhttps://www.ocf.berkeley.edu/~wwu/cgi-bin/yabb/YaBB.cgi?board=riddles_cs;action=display;num=1031609156

	1. Introduction
	2. Proof
	References

