
Beanstalk - Pod
Market V2

Smart Contract Security Audit

Prepared by: Halborn

Date of Engagement: September 26th, 2022 - October 10th, 2022

Visit: Halborn.com

https://halborn.com

DOCUMENT REVISION HISTORY 3

CONTACTS 3

1 EXECUTIVE OVERVIEW 5

1.1 INTRODUCTION 6

1.2 AUDIT SUMMARY 6

1.3 TEST APPROACH & METHODOLOGY 7

RISK METHODOLOGY 7

1.4 SCOPE 9

2 ASSESSMENT SUMMARY & FINDINGS OVERVIEW 11

3 FINDINGS & TECH DETAILS 12

3.1 (HAL-01) INCORRECT POD PRICE CALCULATION WHEN USING PRICE FUNC-

TIONS CONTAINING NEGATIVE POLYNOMIAL COEFFICIENTS - CRITICAL

14

Description 14

Code Location 15

Proof of Concept 17

Risk Level 18

Recommendation 18

Remediation Plan 19

3.2 (HAL-02) MULTIPLE UNDERFLOWS/OVERFLOWS - MEDIUM 20

Description 20

Risk Level 22

Recommendation 23

Remediation Plan 23

3.3 (HAL-03) LISTINGS CAN BE DELETED BY ANYONE - MEDIUM 24

1

Description 24

Code Location 24

Proof of Concept 25

Risk Level 26

Recommendation 26

Remediation Plan 26

3.4 (HAL-04) PLOTS CAN BE UNCONTROLLABLY SPLITTED - LOW 27

Description 27

Proof of Concept 27

Risk Level 28

Recommendation 28

Remediation Plan 28

4 MANUAL TESTING 29

4.1 INTRODUCTION 30

4.2 TESTING 31

MARKETPLACE LISTING/ORDERS: HASH COLLISIONS 31

DEPOSIT PERMITS: SIGNATURE REPLAY ATTACKS 33

RECEIVETOKEN FUNCTION CALLS 35

2

DOCUMENT REVISION HISTORY

VERSION MODIFICATION DATE AUTHOR

0.1 Document Creation 09/26/2022 Roberto Reigada

0.2 Document Updates 10/10/2022 Roberto Reigada

0.3 Draft Review 10/12/2022 Gabi Urrutia

1.0 Remediation Plan 10/17/2022 Roberto Reigada

1.1 Remediation Plan Review 10/18/2022 Gabi Urrutia

1.2
Remeditation Plan

Update
10/27/2022 Francisco González

1.3 Remediation Plan Review 10/28/2022 Kubilay Onur Gungor

1.4 Remediation Plan Review 10/28/2022 Gabi Urrutia

1.5
Remeditation Plan

Update
11/04/2022 Francisco González

1.6 Remediation Plan Review 11/04/2022 Kubilay Onur Gungor

1.7 Remediation Plan Review 11/04/2022 Gabi Urrutia

CONTACTS

3

CONTACT COMPANY EMAIL

Rob Behnke Halborn Rob.Behnke@halborn.com

Steven Walbroehl Halborn Steven.Walbroehl@halborn.com

Gabi Urrutia Halborn Gabi.Urrutia@halborn.com

Kubilay Onur
Gungor

Halborn Kubilay.Gungor@halborn.com

Roberto Reigada Halborn Roberto.Reigada@halborn.com

Francisco
González

Halborn Francisco.Villarejo@halborn.com

4

mailto:Rob.Behnke@halborn.com
mailto:Steven.Walbroehl@halborn.com
mailto:Gabi.Urrutia@halborn.com
mailto:Kubilay.Gungor@halborn.com
mailto:Roberto.Reigada@halborn.com
mailto:Francisco.Villarejo@halborn.com

5

EXECUTIVE OVERVIEW

1.1 INTRODUCTION

Beanstalk engaged Halborn to conduct a security audit on their

Pod Market V2 smart contracts beginning on September 26th, 2022

and ending on October 10th, 2022. The security assessment was

scoped to the smart contracts provided in the GitHub repository

BeanstalkFarms/Beanstalk/tree/Pod-Pricing-Functions.

The assessment also included the confirmation of a critical security

finding identified by the Beanstalk team. Halborn confirmed the issue

and verified the fix applied by the Beanstalk team during the remediation

phase. For more details about the finding and remediation, please see:

- HAL01 - INCORRECT POD PRICE CALCULATION WHEN USING PRICE FUNCTIONS

CONTAINING NEGATIVE POLYNOMIAL COEFFICIENTS.

1.2 AUDIT SUMMARY

The team at Halborn was provided 2 weeks for the engagement and assigned a

full-time security engineer to audit the security of the smart contract.

The security engineer is a blockchain and smart-contract security expert

with advanced penetration testing, smart-contract hacking, and deep

knowledge of multiple blockchain protocols.

The purpose of this audit is to:

• Ensure that smart contract functions operate as intended

• Identify potential security issues with the smart contracts

In summary, Halborn identified a few security risks that were addressed

by the Beanstalk team. The critical security finding was identified and

fixed by the Beanstalk team, and Halborn verified the fix.

6

EX
EC

UT
IV

E
OV

ER
VI

EW

https://github.com/BeanstalkFarms/Beanstalk/tree/Pod-Pricing-Functions

1.3 TEST APPROACH & METHODOLOGY

Halborn performed a combination of manual and automated security testing

to balance efficiency, timeliness, practicality, and accuracy in regard

to the scope of this audit. While manual testing is recommended to

uncover flaws in logic, process, and implementation; automated testing

techniques help enhance coverage of the code and can quickly identify

items that do not follow the security best practices. The following

phases and associated tools were used during the audit:

• Research into architecture and purpose

• Smart contract manual code review and walkthrough

• Graphing out functionality and contract logic/connectivity/functions

(solgraph)

• Manual assessment of use and safety for the critical Solidity

variables and functions in scope to identify any arithmetic related

vulnerability classes

• Manual testing by custom scripts

• Scanning of solidity files for vulnerabilities, security hot-spots

or bugs. (MythX)

• Static Analysis of security for scoped contract, and imported

functions. (Slither)

• Testnet deployment (Brownie, Remix IDE)

RISK METHODOLOGY:

Vulnerabilities or issues observed by Halborn are ranked based on the

risk assessment methodology by measuring the LIKELIHOOD of a security

incident and the IMPACT should an incident occur. This framework

works for communicating the characteristics and impacts of technology

vulnerabilities. The quantitative model ensures repeatable and accurate

measurement while enabling users to see the underlying vulnerability

characteristics that were used to generate the Risk scores. For every

vulnerability, a risk level will be calculated on a scale of 5 to 1 with

5 being the highest likelihood or impact.

7

EX
EC

UT
IV

E
OV

ER
VI

EW

RISK SCALE - LIKELIHOOD

5 - Almost certain an incident will occur.

4 - High probability of an incident occurring.

3 - Potential of a security incident in the long term.

2 - Low probability of an incident occurring.

1 - Very unlikely issue will cause an incident.

RISK SCALE - IMPACT

5 - May cause devastating and unrecoverable impact or loss.

4 - May cause a significant level of impact or loss.

3 - May cause a partial impact or loss to many.

2 - May cause temporary impact or loss.

1 - May cause minimal or un-noticeable impact.

The risk level is then calculated using a sum of these two values, creating

a value of 10 to 1 with 10 being the highest level of security risk.

CRITICAL HIGH MEDIUM LOW INFORMATIONAL

10 - CRITICAL

9 - 8 - HIGH

7 - 6 - MEDIUM

5 - 4 - LOW

3 - 1 - VERY LOW AND INFORMATIONAL

8

EX
EC

UT
IV

E
OV

ER
VI

EW

1.4 SCOPE

IN-SCOPE:

The security assessment was scoped to all the changes performed related

to the new Pod Market V2. The contracts that were affected by this change

were:

• LibPolynomial.sol

• LibBytes.sol

• MarketplaceFacet.sol

• Listing.sol

• Order.sol

• LibSiloPermit.sol

• AppStorage.sol

• SiloFacet.sol

• TokenFacet.sol

• LibTokenApprove.sol

• LibTokenPermit.sol

• LibTransfer.sol

Initial Commit ID:

- d2a9a232f50e1d474d976a2e29488b70c8d19461

Fixed Commit ID 1:

- e1f74ae6e87df0911148e9b5c74403326ab92ba4

Fixed Commit ID 2:

- b6a567d842e72c73176099ffd8ddb04cae2232e6

Fixed Commit ID 3:

- 0bdd376263b0fe94af84aaf4adb6391b39fa80ab

Changes from Fixed Commit ID 2:

LibPolynomial.sol:

- Fixed polynomial integration calculation bug which caused negativeSum

component to be zeroed when a price function containing negative

polynomial coefficient was used.

9

EX
EC

UT
IV

E
OV

ER
VI

EW

https://github.com/BeanstalkFarms/Beanstalk/issues/88
https://github.com/BeanstalkFarms/Beanstalk/commit/d2a9a232f50e1d474d976a2e29488b70c8d19461
https://github.com/BeanstalkFarms/Beanstalk/commit/e1f74ae6e87df0911148e9b5c74403326ab92ba4
https://github.com/BeanstalkFarms/Beanstalk/commit/b6a567d842e72c73176099ffd8ddb04cae2232e6
https://github.com/BeanstalkFarms/Beanstalk/commit/0bdd376263b0fe94af84aaf4adb6391b39fa80ab

Changes from Fixed Commit ID 1:

Listing.sol:

- Modified the order of deleting and creating new listings when a list

is partially filled to prevent listing overwriting.

- Added minFillAmount parameter to listings and orders to minimize plot

splitting, allowing the user who creates the listing or the order to

specify the minimal amount to be filled.

MarketplaceFacet.sol:

- Added minFillAmount parameter to listings and orders to minimize plot

splitting, allowing the user who creates the listing or the order to

specify the minimal amount to be filled.

Order.sol:

- Added minFillAmount parameter to listings and orders to minimize plot

splitting, allowing the user who creates the listing or the order to

specify the minimal amount to be filled.

10

EX
EC

UT
IV

E
OV

ER
VI

EW

2. ASSESSMENT SUMMARY & FINDINGS
OVERVIEW

CRITICAL HIGH MEDIUM LOW INFORMATIONAL

1 0 2 1 0

IM
PA
CT

LIKELIHOOD

(HAL-01)

(HAL-02)
(HAL-03)

(HAL-04)

11

EX
EC

UT
IV

E
OV

ER
VI

EW

SECURITY ANALYSIS RISK LEVEL REMEDIATION DATE

HAL01 - INCORRECT POD PRICE
CALCULATION WHEN USING PRICE
FUNCTIONS CONTAINING NEGATIVE

POLYNOMIAL COEFFICIENTS

Critical SOLVED - 11/04/2022

HAL02 - MULTIPLE
UNDERFLOWS/OVERFLOWS

Medium SOLVED - 10/17/2022

HAL03 - LISTINGS CAN BE DELETED BY
ANYONE

Medium SOLVED - 10/27/2022

HAL04 - PLOTS CAN BE UNCONTROLLABLY
SPLITTED

Low SOLVED - 10/27/2022

12

EX
EC

UT
IV

E
OV

ER
VI

EW

13

FINDINGS & TECH
DETAILS

3.1 (HAL-01) INCORRECT POD PRICE
CALCULATION WHEN USING PRICE
FUNCTIONS CONTAINING NEGATIVE
POLYNOMIAL COEFFICIENTS - CRITICAL

Description:

Note that the finding was identified by the Beanstalk team.

Pod Marketplace V2 introduces a new feature that allows users to create

and fill pod listings and orders using polynomial price functions.

When any user fills an order (sell his Pods to an active offer) by calling

fillPodOrderV2(), the number of BEAN that the seller will receive is

calculated by calling getAmountBeansToFillOrderV2(), which evaluates the

polynomial integration of the price function between A and B boundaries,

which are defined by the place in line of the Pods that are being sold.

To calculate this polynomial integration, the function evaluatePolynomialIntegration

(), contained in LibPolynomial.sol uses the second fundamental theorem

of calculus, which defines the area contained under any curve defined by

a continuous function f(x) between two points A and B as the difference

of the antiderivative function of f(x), F(x), evaluated in B and A:

To implement that, evaluatePolynomialIntegration() splits the integration

into two components, positiveSum and negativeSum, being positiveSum

defined as the sum of the antiderivative functions associated to each

positive term on f(x) evaluated between upper and lower integration

limits, and negativeSum being the same, but for negative coefficients.

14

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

Once these two components have been calculated, the final result of the

integration will be calculated as positiveSum - negativeSum.

However, it was detected that, due to an error on evaluatePolynomialIntegration

() function, negativeSum was being calculated as the sum of the

antiderivative functions associated to each negative term on f(x), but

picking the same value as upper and lower integration limit, causing

negativeSum to be always zero.

This caused the result returned by evaluatePolynomialIntegration() to be

much higher than it should be if the pricing function used contained any

negative term.

This excesively high result would translate into a higher value of

beanAmount obtained in getAmountBeansToFillOrderV2, and it would mean

that the seller could sell any amount of beans at a much higher price

than the buyer intended to pay in the first place. Ultimately, this

would end up in having the BEAN deposited in any order drained, and the

buyer receiving way less Pods than it should have received, rendering

the order non-fillable and the BEAN deposited by the buyer lost.

Code Location:

Listing 1: LibPolynomial.sol (Line 130)

96 /**

97 * @notice Computes the integral of a cubic polynomial

98 * @dev Polynomial is of the form a(x-k)^3 + b(x-k)^2 + c(x-k)

ë + d where k is the start of the piecewise interval

99 * @param f The encoded piecewise polynomial

100 * @param pieceIndex Which piece of the polynomial to evaluate

101 * @param numPieces The number of pieces in the polynomial

102 * @param start The lower bound of the integration. (can

ë overflow past 10e13)

103 * @param end The upper bound of the integration. (can overflow

ë past 10e13)

104 */

105 function evaluatePolynomialIntegration(

106 bytes calldata f,

107 uint256 pieceIndex ,

108 uint256 numPieces ,

109 uint256 start , // start of breakpoint is assumed to be

15

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

ë subtracted

110 uint256 end // start of breakpoint is assumed to be

ë subtracted

111) internal pure returns (uint256) {

112 uint256 positiveSum;

113 uint256 negativeSum;

114

115 uint256 [4] memory significands = getSignificands(f,

ë pieceIndex , numPieces);

116 uint8 [4] memory exponents = getExponents(f, pieceIndex ,

ë numPieces);

117 bool [4] memory signs = getSigns(f, pieceIndex , numPieces);

118

119 for(uint256 degree; degree <= MAX_DEGREE; ++ degree) {

120

121 if(signs[degree]) {

122 // uint256 max value is 1e77 and this has been

ë tested to work to not overflow for values less than 1e14.

123 //Note: susceptible to overflows past 1e14

124 positiveSum = positiveSum.add(pow(end , 1 + degree)

ë .mul(significands[degree]).div(pow(10, exponents[degree]).mul(1 +

ë degree)));

125

126 positiveSum = positiveSum.sub(pow(start , 1 +

ë degree).mul(significands[degree]).div(pow(10, exponents[degree]).

ë mul(1 + degree)));

127 } else {

128 negativeSum = negativeSum.add(pow(end , 1 + degree)

ë .mul(significands[degree]).div(pow(10, exponents[degree]).mul(1 +

ë degree)));

129

130 negativeSum = negativeSum.sub(pow(end , 1 + degree)

ë .mul(significands[degree]).div(pow(10, exponents[degree]).mul(1 +

ë degree)));

131 }

132 }

133

134 return positiveSum.sub(negativeSum);

135 }

16

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

Proof of Concept:

For this PoC, two calls to getAmountBeansToFillOrderV2()

and getAmountBeansToFillOrderV2Wrong() will be performed.

getAmountBeansToFillOrderV2() is the original function with

the fixes proposed in Recommendation section applied, and

getAmountBeansToFillOrderV2Wrong() is a function defined for

this PoC which contains the incorrect integration calculation, zeroing

negativeSum.

A random pricing function has been defined:

Listing 2: Pricing function points

1 const set_13Pieces = {

2 xs: [1000 , 5000 , 6000 , 7000 , 8000 , 9000 , 10000 ,

ë 11000 , 12000 , 13000 , 14000 , 18000 , 20000],

3 ys: [1000, 2000, 4000, 9000, 15000, 30000, 65000, 100000 ,

ë 105000 , 120000 , 750000 , 1000000 , 2000000]

4 }

Then, a test that calls both version of getAmountBeansToFillOrderV2() is

defined:

Listing 3: getAmountBeansToFillOrderV2() testing

1 describe("Comparing old and fixed integration calculation

ë logic", async function () {

2 beforeEach(async function () {

3 this.f = interpolatePoints(hugeValueSet_13Pieces.xs ,

ë hugeValueSet_13Pieces.ys);

4 })

5

6 it("fixed logic", async function () {

7 const startPlaceInLine = 10000000000000;

8 const amountPodsFromOrder = 185000000000000;

9 const orderBeanAmount = getAmountOrder(this.f,

ë startPlaceInLine , amountPodsFromOrder);

10 expect(await this.marketplace.connect(user).

ë getAmountBeansToFillOrderV2(startPlaceInLine , amountPodsFromOrder ,

ë this.f.packedFunction)).to.be.equal(orderBeanAmount);

11 console.log(await this.marketplace.connect(user).

17

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

ë getAmountBeansToFillOrderV2(startPlaceInLine , amountPodsFromOrder ,

ë this.f.packedFunction));

12 })

13

14 it("old logic", async function () {

15 const startPlaceInLine = 10000000000000;

16 const amountPodsFromOrder = 185000000000000;

17 const orderBeanAmount = getAmountOrder(this.f,

ë startPlaceInLine , amountPodsFromOrder);

18 expect(await this.marketplace.connect(user).

ë getAmountBeansToFillOrderV2(startPlaceInLine , amountPodsFromOrder ,

ë this.f.packedFunction)).to.be.equal(orderBeanAmount);

19 console.log(await this.marketplace.connect(user).

ë getAmountBeansToFillOrderV2Wrong(startPlaceInLine ,

ë amountPodsFromOrder , this.f.packedFunction));

20 })

21 })

When executed, and as expected, the BEAN amount needed to pay for the

same amount of Pods is higher when using the same old logic, meaning that

the buyer would lose these BEAN difference because of the miscalculation:

The amount of BEANS lost would entirely depend on the pricing function

set by the seller and the position in the line of the Pods being sold.

Risk Level:

Likelihood - 5

Impact - 5

Recommendation:

It is recommended to fix the calculation of negativeSum by using start

integration limit on L#130.

18

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

Remediation Plan:

SOLVED: The Beanstalk team solved the issue by using the lower integration

limit on L#130, preventing negativeSum from being zeroed.

19

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

3.2 (HAL-02) MULTIPLE
UNDERFLOWS/OVERFLOWS - MEDIUM

Description:

In some MarketplaceFacet related contracts, there are multiple overflows

that can cause some inconsistencies.

One of them is located in the _createPodListing() function:

Listing 4: Listing.sol (Line 68)

58 function _createPodListing(

59 uint256 index ,

60 uint256 start ,

61 uint256 amount ,

62 uint24 pricePerPod ,

63 uint256 maxHarvestableIndex ,

64 LibTransfer.To mode

65) internal {

66 uint256 plotSize = s.a[msg.sender]. field.plots[index];

67 require(

68 plotSize >= (start + amount) && amount > 0,

69 "Marketplace: Invalid Plot/Amount."

70);

71 require(

72 0 < pricePerPod ,

73 "Marketplace: Pod price must be greater than 0."

74);

75 require(

76 s.f.harvestable <= maxHarvestableIndex ,

77 "Marketplace: Expired."

78);

79

80 if (s.podListings[index] != bytes32 (0)) _cancelPodListing(

ë index);

81

82 s.podListings[index] = hashListing(

83 start ,

84 amount ,

85 pricePerPod ,

86 maxHarvestableIndex ,

20

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

87 mode

88);

89

90 emit PodListingCreated(

91 msg.sender ,

92 index ,

93 start ,

94 amount ,

95 pricePerPod ,

96 maxHarvestableIndex ,

97 mode

98);

99 }

The require(plotSize >= (start + amount)&& amount > 0, "Marketplace:

Invalid Plot/Amount."); overflow allows users to create PodListings

of very high amounts, although this can not be exploited since when

removing the Plots from the seller through the removePlot() function

SafeMath is used and the transaction reverts:

Listing 5: PodTransfer.sol (Line 82)

72 function removePlot(

73 address account ,

74 uint256 id ,

75 uint256 start ,

76 uint256 end

77) internal {

78 uint256 amount = s.a[account]. field.plots[id];

79 if (start == 0) delete s.a[account]. field.plots[id];

80 else s.a[account]. field.plots[id] = start;

81 if (end != amount)

82 s.a[account]. field.plots[id.add(end)] = amount.sub(end);

83 }

On the other hand, a similar issue occurs in:

Listing.sol

- Line 92:

require(plotSize >= (start + amount)&& amount > 0, "Marketplace:

Invalid Plot/Amount.");

21

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

- Line 134:

require(plotSize >= (l.start + l.amount)&& l.amount > 0, "Marketplace:

Invalid Plot/Amount.");

- Line 162:

require(plotSize >= (l.start + l.amount)&& l.amount > 0, "Marketplace:

Invalid Plot/Amount.");

- Line 251:

uint256 pricePerPod = LibPolynomial.evaluatePolynomialPiecewise(

pricingFunction, l.index + l.start - s.f.harvestable);

Order.sol

- Line 98:

require(s.a[msg.sender].field.plots[index] >= (start + amount), "

Marketplace: Invalid Plot.");

- Line 99:

require((index + start - s.f.harvestable + amount)<= o.maxPlaceInLine,

"Marketplace: Plot too far in line.");

- Line 125:

require(s.a[msg.sender].field.plots[index] >= (start + amount), "

Marketplace: Invalid Plot.");

- Line 126:

require((index + start - s.f.harvestable + amount)<= o.maxPlaceInLine,

"Marketplace: Plot too far in line.");

- Line 129:

uint256 costInBeans = getAmountBeansToFillOrderV2(index + start - s.f.

harvestable, amount, pricingFunction);

- Line 190:

beanAmount = LibPolynomial.evaluatePolynomialIntegrationPiecewise(

pricingFunction, placeInLine, placeInLine + amountPodsFromOrder);

Risk Level:

Likelihood - 3

Impact - 3

22

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

Recommendation:

Using the SafeMath library in all the code lines described above is

recommended.

Remediation Plan:

SOLVED: The Beanstalk team solved the issue and now uses the SafeMath

library in all the code lines suggested.

23

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

3.3 (HAL-03) LISTINGS CAN BE
DELETED BY ANYONE - MEDIUM

Description:

MarketplaceFacet.soland its related contracts and libraries implements

Listings and Orders, which allow users to buy and sell their pod in a

decentralized, trustless fashion.

When any user wants to sell their pods, a listing containing the plot,

the pods being sold within the plot, the price per pod, and the expiration

time (in the number of pods). When another user wants to buy these pods,

he has to fulfill the listing.

Listings can be partially fulfilled, meaning that users can buy only a

part of the pods listed. When a listing is partially fulfilled, a new

listing is created in the index (currentIndex + beanAmount) containing

the remaining unsold pods, and the previous listing is deleted.

However, it has been detected that a griefer could fill a listing

introducing 0 in beanAmount, forcing the new position to be created at

the same index, and then deleted, causing the position to be cancelled.

This could allow any well motivated griefer to constantly prevent any

user to sell his pods, cancel listings whose pods are about to become

harvestable, etc.

Code Location:

Listing 6: Listing.sol (Lines 134-140,142)

126 function __fillListing(

127 address to ,

128 PodListing calldata l,

129 uint256 amount

130) private {

131 // Note: If l.amount < amount , the function roundAmount

ë will revert

132

24

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

133 if (l.amount > amount)

134 s.podListings[l.index.add(amount).add(l.start)] =

ë hashListing(

135 0,

136 l.amount.sub(amount),

137 l.pricePerPod ,

138 l.maxHarvestableIndex ,

139 l.mode

140);

141 emit PodListingFilled(l.account , to , l.index , l.start ,

ë amount);

142 delete s.podListings[l.index];

143 }

Proof of Concept:

For this PoC, user2 will list 1000 pods on index 1000. Subsequently,

another user will fill that listing with 500 pods, meaning that a new

listing will be created on index 1500 with the remaining 500 pods. That

would represent a typical use case.

Thereafter, the chain will be reverted, and the same listing will be

created, but this time, the listing will be filled with 0 pods. That

means a new listing with the remaining pods (1000) will be created on the

same index (previous index + beanAmount which is 0), and then the listing

on the previous index will be deleted. This will result in having the

listing canceled by an external user:

25

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

Risk Level:

Likelihood - 3

Impact - 3

Recommendation:

It is recommended first to delete the original listing when it gets

partially fulfilled and then create the new one containing the remaining

pods. This way, it can be assured that the new listing will not be deleted

in case it is created in the same index as the previous one (listings

with 0 start parameters and filled with 0 beanAmount).

Remediation Plan:

SOLVED: The Beanstalk team solved the issue by switching the order in

which the new listing is created, and the original one is removed, ensuring

that it does not get deleted.

26

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

3.4 (HAL-04) PLOTS CAN BE
UNCONTROLLABLY SPLITTED - LOW

Description:

As described in the previous finding, the Marketplace can be used to buy

and sell pods, and listings or orders can be partially filled. When an

order or listing is partially filled, the pods contained on each plot are

split to be able to assign the acquired pods to the buyer.

However, it has been detected that there is no limit on the granularity in

which the plots can be split. This allows any griefer to fill any listing

or orders with the minimal amount of beanAmount allowed by the data type

(1), which would cause, in the case of orders, the buyer would end with

a large amount of tiny plots, which would be extremely uncomfortable to

manage.

This could also naturally happen without needing a griefer. If any user

creates a large order that many different users partially fulfill, that

will end up in many different sub-plots, which would have to be separately

sold, harvested, etc. This also means that gas costs would be increased.

Proof of Concept:

For this PoC, user1 will create a 1000 pods orders. Thereafter, the user2

user will partially fill that listing with 1 pod from his plot on index

1000, but he will choose 998 as the first pod.

Subsequently, the original plot will be split into 3 subplots now with a

single order fill:

27

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

Suppose this gets repeated over time (intentionally or unintentionally).

In that case, it will result in many plots containing a few pods each,

which would significantly increase management gas costs.

Risk Level:

Likelihood - 2

Impact - 2

Recommendation:

It is recommended to introduce a parameter that defines the minimum fill

amount for orders and listings to prevent plots from being split into

smaller than desired subplots.

Remediation Plan:

SOLVED: The Beanstalk team fixed the issue by adding a minFillAmount

parameter in listings and orders to allow users to control the minimum

desired plot size.

28

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

29

MANUAL TESTING

4.1 INTRODUCTION

Halborn performed different manual tests in all the different Facets of the

Beanstalk protocol, trying to find any logic flaws and vulnerabilities.

During the manual tests, the following areas were reviewed carefully:

1. Hash collisions in the Marketplace listing/orders.

2. Signature replay attacks related to the new deposit Permits

implementation.

3. receiveToken() function calls.

30

MA
NU

AL
TE

ST
IN

G

4.2 TESTING

MARKETPLACE LISTING/ORDERS: HASH COLLISIONS:

In the MarketplaceFacet the POD listings hashes are built this way:

Listing 7: Listing.sol (Lines 265,277)

258 function hashListing(

259 uint256 start ,

260 uint256 amount ,

261 uint24 pricePerPod ,

262 uint256 maxHarvestableIndex ,

263 LibTransfer.To mode

264) internal pure returns (bytes32 lHash) {

265 lHash = keccak256(abi.encodePacked(start , amount , pricePerPod ,

ë maxHarvestableIndex , mode == LibTransfer.To.EXTERNAL));

266 }

267

268 function hashListingV2(

269 uint256 start ,

270 uint256 amount ,

271 uint24 pricePerPod ,

272 uint256 maxHarvestableIndex ,

273 bytes calldata pricingFunction ,

274 LibTransfer.To mode

275) internal pure returns (bytes32 lHash) {

276 require(pricingFunction.length == LibPolynomial.getNumPieces(

ë pricingFunction).mul (168).add (32), "Marketplace: Invalid pricing

ë function.");

277 lHash = keccak256(abi.encodePacked(start , amount , pricePerPod ,

ë maxHarvestableIndex , mode == LibTransfer.To.EXTERNAL ,

ë pricingFunction));

278 }

On the other hand, the orders are built as shown below:

Listing 8: Order.sol (Lines 202,212)

197 function createOrderId(

198 address account ,

199 uint24 pricePerPod ,

31

MA
NU

AL
TE

ST
IN

G

200 uint256 maxPlaceInLine

201) internal pure returns (bytes32 id) {

202 id = keccak256(abi.encodePacked(account , pricePerPod ,

ë maxPlaceInLine));

203 }

204

205 function createOrderIdV2(

206 address account ,

207 uint24 pricePerPod ,

208 uint256 maxPlaceInLine ,

209 bytes calldata pricingFunction

210) internal pure returns (bytes32 id) {

211 require(pricingFunction.length == LibPolynomial.

ë getNumPieces(pricingFunction).mul (168).add (32), "Marketplace:

ë Invalid pricing function.");

212 id = keccak256(abi.encodePacked(account , pricePerPod ,

ë maxPlaceInLine , pricingFunction));

213 }

For both cases, taking into consideration how orders and listings hashes

are built, there is no way to intentionally create, for example, a

different order with the same hash in order to steal the Beans sent in

a previous order. 2^256 (the number of possible keccak-256 hashes) is

around the number of atoms in the known observable universe. With the

current code, a collision would be as unlikely as picking two atoms at

random and having them turn out to be the same.

32

MA
NU

AL
TE

ST
IN

G

DEPOSIT PERMITS: SIGNATURE REPLAY ATTACKS:

The deposit permits were implemented with the following code:

Listing 9: LibSiloPermit.sol (Lines 36,53)

25 function permit(

26 address owner ,

27 address spender ,

28 address token ,

29 uint256 value ,

30 uint256 deadline ,

31 uint8 v,

32 bytes32 r,

33 bytes32 s

34) internal {

35 require(block.timestamp <= deadline , "Silo: permit expired

ë deadline");

36 bytes32 structHash = keccak256(abi.encode(

ë DEPOSIT_PERMIT_TYPEHASH , owner , spender , token , value , _useNonce(

ë owner), deadline));

37 bytes32 hash = _hashTypedDataV4(structHash);

38 address signer = ECDSA.recover(hash , v, r, s);

39 require(signer == owner , "Silo: permit invalid signature");

40 }

41

42 function permits(

43 address owner ,

44 address spender ,

45 address [] memory tokens ,

46 uint256 [] memory values ,

47 uint256 deadline ,

48 uint8 v,

49 bytes32 r,

50 bytes32 s

51) internal {

52 require(block.timestamp <= deadline , "Silo: permit expired

ë deadline");

53 bytes32 structHash = keccak256(abi.encode(

ë DEPOSITS_PERMIT_TYPEHASH , owner , spender , keccak256(abi.

ë encodePacked(tokens)), keccak256(abi.encodePacked(values)),

ë _useNonce(owner), deadline));

54 bytes32 hash = _hashTypedDataV4(structHash);

55 address signer = ECDSA.recover(hash , v, r, s);

56 require(signer == owner , "Silo: permit invalid signature");

33

MA
NU

AL
TE

ST
IN

G

57 }

ECDSA library was used following the best practices. This library prevents

any kind of signature malleability attack. On the other hand, the

signatures use a domain separator which is built with the chain.id,

the Beanstalk smart contract address and other parameters like name,

version. . . This totally prevents any kind of cross-chain signature

replay attacks.

Lastly, it is known that using abi.encodePacked() with dynamic parameters

is vulnerable to hash collisions. Any attack vector related to this was

very well prevented in the following line by doing a keccak256 hash of

the tokens and values arrays:

bytes32 structHash = keccak256(abi.encode(DEPOSITS_PERMIT_TYPEHASH,

owner, spender, keccak256(abi.encodePacked(tokens)), keccak256(abi.

encodePacked(values)), _useNonce(owner), deadline));

34

MA
NU

AL
TE

ST
IN

G

https://github.com/OpenZeppelin/openzeppelin-contracts/blob/master/contracts/utils/cryptography/ECDSA.sol
https://medium.com/swlh/new-smart-contract-weakness-hash-collisions-with-multiple-variable-length-arguments-dc7b9c84e493

RECEIVETOKEN FUNCTION CALLS:

If the receiveToken() call return value is not checked, users can abuse

this by using the INTERNAL_TOLERANT fromMode. Every receiveToken() call

was checked carefully and all of them are considering its return value.

35

MA
NU

AL
TE

ST
IN

G

THANK YOU FOR CHOOSING

	DOCUMENT REVISION HISTORY
	CONTACTS
	EXECUTIVE OVERVIEW
	INTRODUCTION
	AUDIT SUMMARY
	TEST APPROACH & METHODOLOGY
	RISK METHODOLOGY

	SCOPE

	ASSESSMENT SUMMARY & FINDINGS OVERVIEW
	FINDINGS & TECH DETAILS
	
	Description
	Code Location
	Proof of Concept
	Risk Level
	Recommendation
	Remediation Plan

	
	Description
	Risk Level
	Recommendation
	Remediation Plan

	
	Description
	Code Location
	Proof of Concept
	Risk Level
	Recommendation
	Remediation Plan

	
	Description
	Proof of Concept
	Risk Level
	Recommendation
	Remediation Plan

	MANUAL TESTING
	INTRODUCTION
	TESTING
	MARKETPLACE LISTING/ORDERS: HASH COLLISIONS
	DEPOSIT PERMITS: SIGNATURE REPLAY ATTACKS
	RECEIVETOKEN FUNCTION CALLS

