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We believe that that Web3, the next iteration of the internet, will be 
built on decentralized technology across three fundamental pillars: 
consensus, storage, and computation. 

Blockchain technology is what set off a revolution of decentralization and brought about the concept 
of Web3, representing the idea to not only decentralize consensus, but to use this technology to 
decentralize the rest of the internet too. 

“Web3 is the stack of protocols that enable fully decentralized applications.” – Nader Dabit 

Just like Web2, Web3 is a complex amalgamation of a wide array of technologies that together form 
the Web3 ecosystem. Despite its complexity, we can break down the ecosystem into three key 
infrastructural pillars that need to be developed to achieve full decentralization of the internet: 
consensus, storage, and computation. 

Consensus has matured quickly since Bitcoin’s launch in 2009, with dozens of other successful models 
of decentralized consensus having been brought to life since then. Over time attempts at 
decentralizing storage and computation have emerged that aim to complement these to build the 
next pillars of a truly decentralized internet. 

 
Figure 1: Illustrative slice of projects enabling each of the Web 3 pillars 

In this piece we will look at decentralized storage, which describes peer-to-peer networks, in which 
members combine disk space to create what is essentially a global hard drive that is trustless, 
immutable, and in some cases permanent and censorship-resistant. 
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Section 1 

The Need for  
Decentralized Storage 
In this section we take a close look at the question why we even need decentralized storage. First, we 
look at decentralized storage from a blockchain perspective. Then, we take a closer look at NFTs and 
dApps from the perspective of decentralization, immutability, and permanence to understand why 
decentralized storage is preferred over centralized Web2 storage approaches. 

The need for decentralized storage from a blockchain perspective can be examined from two primary 
perspectives: 

Economic: storing data on chain is very expensive. Data that does not need to be stored on a 
blockchain should not be stored on a blockchain. 

Technical: storing data on chain is very inefficient, and blocks only have a limited size. To prevent 
blocks from being filled up with useless data, we need to offload that data elsewhere. 
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The economic perspective: how expensive is it to store data? 

Storing data directly on a blockchain is extremely expensive, which is why blockchains primarily store 
transactions (or their outcomes as state data), and which is also why smart contracts are reduced to 
as few lines of code as possible. This is where decentralized storage networks come in: they store data 
that is too expensive to store on the blockchain, but need to be permanent, immutable, and resistant 
to censorship. 

If we wanted to store the image file of the Bored Aped Yacht Club #3368 NFT On the Bitcoin Network, 
we would require at least 1700 OP_RETURN transactions (conservative estimate) to save the entire file, 
assuming standard consensus rules and node settings (80 bytes of arbitrary data per OP_RETURN, max 
one OP_RETURN per transaction). With a transaction fee of 12 sats/vB, that’s 0.028 BTC for a single 
image of the 10,000 piece collection. 

Storing the same image data on the Ethereum network’s permanent storage would cost roughly 7.9 
ETH at ~95 gwei gas fees requiring nearly 23m gas units in a single smart contract deployment. For 
most applications, such storage costs are just not feasible. 

 
Figure 2: Projects with active Mainnets. 200 years storage duration selected to match Arweave’s minimum definition of permanence. 

Sources: Network Documentations, Arweave Storage Calculator 

If we further compare these costs against the cost of storing the same data on a decentralized storage 
network, we can quickly see that purpose-built storage networks are far more cost-efficient at storing 
files, while also ensuring permanence, immutability, and censorship resistance – more on that later. 

 

Network Token Storage duration Classification
Bitcoin BTC Permanent On-chain 0.0284 BTC 892 USD 1 BTC = 31,467

Ethereum ETH Permanent On-chain 7.90 ETH 18,723 USD 1 ETH = 2,369

Filecoin FIL 200 years Off-chain 0.0000000079 FIL 0.000000093 USD 1 FIL = 11.80

Arweave AR 200 years Off-chain 0.000061 AR 0.0012 USD 1 AR = 18.91

Dfinity ICP 200 years Off-chain 0.105 XDR 0.1410 USD 1 XDR = 1.34

Crust CRU 200 years Off-chain 0.40 CRU 0.5480 USD 1 CRU = 1.37

Price (10th May, 2022)Total

Collection Bored Ape Yacht Club

Item #3368

Image size 133,110 bytes

@0xPhillan
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The technical perspective: why should we want to avoid storing data 
directly on public blockchains? 

Blockchains, as the name suggests, consist of blocks that are connected to one another forming a 
chronological sequence of blocks. Each block points to the previous block to ensure that data in past 
blocks cannot be adjusted. The data that is contained in the blocks are transactions or state 
descriptors. Thousands of nodes globally ensure that nobody cheats the system and consensus 
between the nodes is maintained. 

With every block, a set of transactions are added that change the state of values within the network. 
Since the size of the blocks is capped, only a certain amount of transactions can be processed per 
block. This gives an implicit time-value to blocks, that is reflected in the fees that network participants 
are willing to pay to have their transaction confirmed and included in a block.  

When a block is filled, transactions stay within a node’s mempool until the block is confirmed and the 
transactions are added to the next block. If a transaction is not confirmed for an extended period, it 
may be impacted by slippage or by bots frontrunning the transaction. Storing arbitrary data on 
blockchains amplifies this issue by occupying blockspace and pushing transactions to be included in 
later blocks. 

The limited supply of blockspace coupled with the demand for transactions to be included in a block 
thus drives up transaction fees for the entire network, which can dissuade users from interacting with 
the network. 

Arbitrary data on blockchains can be reduced through decentralized storage networks, by offloading 
those data loads while offering similar characteristics to public blockchains. 
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But why not store files on centralized networks? 

The previous perspectives explain why we shouldn’t store data on blockchains, however, the next 
question becomes: why store data on decentralized networks? Data could just as easily be stored on a 
Web2 centralized server. The answer to this is quite simple: to ensure immutability and trustlessness, 
and to enable permanence and censorship-resistance of the data. 

The case for NFTs 

Let’s take a look at NFTs: non-fungible tokens (NFTs) represent a unique (i.e., non-fungible) ownership 
token that is stored on a blockchain and is controlled by a smart contract. The blockchain records 
who owns the unique token and points to something called metadata, which describes what the 
token represents. The metadata includes details about the NFT as well as links to other data such as 
media files – this is what gives the NFT context and meaning.  

 
Figure 3: Simplified illustration of a blockchain, blocks, an NFT, and off-chain metadata. 

Metadata can be stored anywhere. As long as the data is accessible through the pointer embedded in 
the NFT smart contract, the contents will be available in the NFT. If metadata is stored on a 
centralized server the data could be tampered with, the server could be destroyed or access to the 
data can be restricted – stripping the NFT of its context and meaning. When an NFT collection 
facilitates hundreds of thousands of ETH in transactions, has a floor price well above US$100k per 
NFT, and prices of up to US$70k per kb of image data, users expect every byte of metadata to be just 
as immutable and permanent as the on-chain NFT. 
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Figure 4: Crypto Punk Floor Price based on last sale (no floor available at time of writing); Crypto Punk image size based on byte-length of 

Crypto Punks V2 on-chain byte string. Data as of May 10th, 2022. Sources: OpenSea, on-chain data, IPFS metadata. 

Arguably the value of NFTs is not primarily driven by the image data they refer to, but instead it’s 
driven by communities that build a movement and an ecosystem around their collections. 
Nonetheless, without the metadata the NFTs would have no meaning and without meaning 
communities could not form. 

NFTs are not only limited to art collectibles. The data stored within the metadata could be anything, 
as long as it can be saved as data: legal documents denoting ownership of tangible assets such as the 
deeds to a property or ownership certificates of financial instruments could be referenced in an NFT. 
Such data holds an extrinsic off-chain value, and the preservation of every byte of data is at least as 
valuable as the entire NFT: if by changing only one byte the entire dataset could be invalidated, 
immutability of the original data holds even greater importance. 

How secure is NFT metadata really? 

Apart from being the top three NFT collections on OpenSea in terms of total trade volume at the time 
of writing this piece, above three collections also each use a different approach to store metadata, 
each with varying levels of security (i.e., immutability and permanence). 

Crypto Punks 

NFT smart contract: Ethereum Smart Contract 0xb47e3cd837dDF8e4c57F05d70Ab865de6e193BBB 

Metadata:  Ethereum Smart Contract 
0x16F5A35647D6F03D5D3da7b35409D65ba03aF3B2 

Image data:  Ethereum Smart Contract 
Figure 5: Crypto Punks NFT collection smart contract and metadata storage addresses. 

Crypto Punks is the most secure, with all metadata and image data being directly stored on-chain. By 
parsing the metadata and image data smart contract address, you can directly retrieve NFT attributes 
and raw image data. Because all data is stored on-chain, the NFT inherits the security attributes of the 

Collection Trade Volume
(ETH)

Items Floor Price
(ETH)

NFT# Image File Size 
(kb)

Floor price/kb
(ETH)

Floor price/kb
(USD)

Crypto Punks

902,888 10,000 66.95

#6406

2.25 29.76 70,490.91

BAYC

558,548 10,000 99.79

#3368

129.99 0.77 1,818.62

MAYC

389,015 19,100 22.39

#3870

615.84 0.04 86.13

@0xPhillan

https://etherscan.io/address/0x16f5a35647d6f03d5d3da7b35409d65ba03af3b2#readContract
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Ethereum chain. These NFTs are immutable, will always be on-chain and will always be accessible as 
long as the Ethereum network exists. 

Bored Ape Yacht Club (BAYC) 

NFT smart contract: Ethereum Smart Contract 0xBC4CA0EdA7647A8aB7C2061c2E118A18a936f13D 

Metadata:  IPFS CID (example: #3368) ipfs://QmeSjSinHpPnmXmspMjwiXyN6zS4E9zccariGR3jxcaWtq/3368 

Image data:  IPFS CID (example: #3368) ipfs://QmcRTc1txJt1XFS8aE482e8bBAbNGtY8Dat1nATPdEG57c 

Figure 6: BAYC NFT collection smart contract and metadata storage addresses. 

BAYC stores metadata and image data using the InterPlanetary File System (IFPS), which is a peer-to-
peer hypermedia protocol that solves decentralized content addressing. On IPFS once the content 
receives a content ID (CID), which also acts as a link to the data, it cannot be changed anymore. While 
IPFS is considered to be censorship-resistant, there are still risks of data being removed from IPFS 
nodes which would result in the NFT metadata eventually disappearing. 

Mutant Ape Yacht Club (MAYC) 

NFT smart contract: Ethereum Smart Contract 0x60E4d786628Fea6478F785A6d7e704777c86a7c6 

Metadata:  Webserver (example: #3870) https://boredapeyachtclub.com/api/mutants/3870 

Image data:  IPFS CID (example: #3870) ipfs://Qmcg5P6jtJUPf8TdzWx5FLQ3TCQ4gcaDoaBepmGiJAbbLZ 

Figure 7: MAYC NFT collection smart contract and metadata storage addresses. 

Finally, MAYC stores all NFT metadata on a centralized webserver, which points to images that are 
hosted on IPFS. While the images are retrievable through their IPFS CIDs, the metadata stored on the 
webserver can be changed at any time. This means that all NFTs within the MAYC NFT collection can 
have their traits and images removed, or have their images replaced with other images. 

Out of the top three collections, MAYC is the least secure lacking metadata immutability, permanence, 
and censorship resistance. 

Ultimately how the developers implemented the metadata hosting will determine how secure the NFT 
metadata is. On-chain is the most secure, but extremely expensive, hence not always a good option. 
Centralized servers run impermanence and mutability risks. Decentralized storage networks present a 
middle ground that balance cheaper costs with permanence, immutability, and censorship resistance. 

The case for dApps 

dApps (decentralized applications) are fundamentally different to NFTs, in that dApps enable services 
that facilitate interaction with a blockchain. A dApp consists of a front-end user interface and 
sometimes a back-end to enable and facilitate interaction with smart contracts. A smart contract is a 
self-executing piece of code on a decentralized blockchain network, that users can interact with. In 
contrast to dApps, regular apps have their backend code on centralized servers on individual devices. 

What is special about smart contracts is that all aspects of the smart contract’s operation are written 
directly into the code and can be publicly reviewed before interacting with the code. Interacting 
directly with a smart contract, however, requires some technical background and an understanding of 
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how the blockchain and smart contract engine of that blockchain work. To bridge this gap, dApps 
provide an easy interface for users to interact with a decentralized blockchain network. 

 
Figure 8: Simplified illustration of dApp interaction with a blockchain. 

On decentralized networks that support smart contract execution, every write operation comes at a 
cost. Sometimes these operations can be quite complex – this is where dApp back-ends come in. dApp 
backends are different to smart contracts, as they exist primarily to either convert inputs into smart 
contract compatible inputs or to shift certain computational loads away from smart contracts to 
optimize reduce gas costs. 

The value proposition for dApps is fundamentally different to that of NFTs, as they provide users with 
a service instead of having their value locked in an asset. dApps are in a constant state of change: 
improvements and bug fixes are regularly applied, which causes the underlying data to change over 
time. As a result, a dApp cannot be measured on the value of the underlying data. Instead, the value of 
the service needs to be measured in the context of the specific dApp. For DeFi (decentralized finance) 
dApps, the value can be measured based on the asset transfer volumes facilitated through the dApp 
or total value locked (TVL), while social dApps may focus more on interaction and user metrics. 
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Figure 9: The most popular dApps by US$ volume as reported by DappRadar as of May 11th, 2022. 

The above list by DappRadar shows the top ten dApps by volume, collectively facilitating transfers of 
over US$150bn within the last 30 days at the time of writing. While the dApps listed here are primarily 
DeFi and Exchange dApps, dApps can fulfill any purpose. As long as the application interacts with 
blockchains by way of smart contracts through some sort of user interface, the application can be 
considered a dApp. Other popular dApp categories include, games, metaverses, marketplaces, social 
media and name services. 

But why should dApps be decentralized if users can interact with the core mechanics of the dApp 
through smart contracts on a blockchain? The answer lies in assuring service availability and 
permanence. With a decentralized storage network that replicates copies of the data to dozens of 
nodes, dApps reduce the likelihood of going offline due to server malfunctions, improve resistance to 
DNS hacks and live on, even if development comes to an end. Also, depending on the decentralized 
storage network, a certain level of censorship-resistance is also introduced in that no single 
centralized entity can easily remove the data. 
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Figure 10: Aave founder Stani Kulechov tweets that the Aave dApp front-end went offline on Jan 20th 2022, but was still accessible through an 

IPFS-hosted copy of the website. https://twitter.com/StaniKulechov/status/1487754439691845633 

How decentralized are dApps really? 

A common misconception is that dApps are decentralized in all aspects (as implied by the word 
“dApp”). While some dApps, such as Uniswap and Aave, go the extra mile to ensure their dApps can be 
accessed both from a centralized server and as well through decentralized networks, many dApps opt 
to only host their services on centralized servers. Still, as long as the applications access and interact 
with smart contracts on decentralized blockchains, these tools are considered dApps. 

When measuring the extent of decentralization of dApps in the context of service accessibility there 
are a few factors to consider: 

1. Is the dApp front-end accessible through decentralized networks?  
2. If yes, to what extent is the data on those networks immutable and permanent? 
3. Could users locally host the dApp front-end to access the services (i.e., is the dApp source 

code open source?) 

If we look deeper into the above top three dApps in terms of volume, we find that out of the top three 
dApps, all dApps publish their source code allowing for individuals to deploy the dApp frontends to 
decentralized storage providers. Furthermore, Uniswap and Curve go a step further and directly 
provide regularly updated CIDs in their ENS (Ethereum Name Service) records. 

https://twitter.com/StaniKulechov/status/1487754439691845633
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Figure 11: Uniswap and Curve deployed on IPFS with latest links updated in their ENS records 

While the above is only an illustrative example of best practices, currently only few dApps actively 
decentralize their user interface. The premise of DeFi, which is often also referred to as Open Finance, 
is to make away with restrictions on who can access and trade financial assets. While the 
underutilization of decentralized storage does create a break in that narrative, it also creates 
opportunities for future growth and adoption. 

The next section looks at individual decentralized storage solutions in more detail, covering 
decentralization mechanics, storage pricing algorithms, and tokenomics. 
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Section 2:  

Challenges Surrounding 
Decentralization of Data 
As we have established, decentralized storage is vital to a web3 future. The decentralized storage 
landscape is vast considering how young it is. Given the complexity of challenges storage protocols 
must overcome, each protocol makes certain trade-offs to achieve their vision of decentralization. 
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Decentralized Storage Landscape 

Unlike Layer1 blockchains in which the primary purpose is trustless value transfers, such as Bitcoin 
and Ethereum, decentralized storage networks need not only record transactions (which are used for 
storage requests) but must also ensure that data is stored for a specific amount of time as well as 
overcome other challenges pertaining to storage. As a result, it is not uncommon to see decentralized 
storage blockchains applying multiple consensus mechanisms that work in tandem to ensure 
different aspects of the storage and retrieval can work. 

In below non-exhaustive list of decentralized storage projects, we can catch a glimpse of the 
decentralized storage landscape  as well as niche data storage use cases, such as P2P filesharing and 
data markets.  

The focus of this research is on storage networks (IPFS and non-IPFS based). 

 
Figure 12: Overview of some arbitrarily selected decentralized storage protocols (non-exhaustive) 

  

Category Project Native Blockchain Token Token Type

Storage (IPFS-based) Filecoin FIL Native

Storage (IPFS-based) Crust Network CRU Native

Storage (IPFS-based) n/a n/a n/a

Storage The blockweave AR Native

Storage Sia SC Native

Storage n/a STORJ ERC-20 (Ethereum)

Storage n/a BZZ ERC-20 (Ethereum)

Storage & computing Internet Computer ICP Native

Storage & computing Holochain HOL Native

Storage & computing Stratos Chain STOS Native

P2P filesharing n/a BTT TRC-20 (Tron)

Data markets n/a OCEAN ERC-20 (Ethereum)

@0xPhillan
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Decentralized Storage Design Challenges 

As has been demonstrated in the first section of this paper, blockchains are not suitable for storing 
large amounts of data on-chain, due to the cost associated with it and the impact on block space. As a 
result, decentralized storage networks must apply other techniques to ensure decentralization. Not 
using the blockchain as the primary storage space, however, leads to a long list of other challenges if 
the network wants to maintain decentralization. 

In essence, a decentralized storage network must be capable of storing data, retrieving data, and 
maintaining data while ensuring that all actors within the network are incentivized for the work they 
do, while also upholding the trustless nature of decentralized systems.  

Hence, from a design perspective, we can summarize the primary challenges in below illustrative 
paragraphs: 

Data Storage Format – First the network must decide how to store the data: should the data be 
encrypted and should the data be saved as a full set or split into smaller pieces. 

Replication of Data – Then the network needs to decide where to store the data: how many nodes 
should the data be stored on, and whether all data is to be replicated to all nodes or whether each 
node should get different fragments to further protect data privacy. The data storage format and the 
network diffusion of data will determine the probability of data being available on the network with 
regards to devices failing over time (durability). 

Storage Tracking – From here, the network needs a mechanism to track where the data is stored. 
This is important, because the network needs to know which network locations to ask to retrieve 
specific data. 

Proof of Data Stored – Not only does the network need to know where data is stored, but storage 
nodes also need to be able to prove that they are indeed storing the data they are intended to be 
storing. 

Data Availability over Time – Networks also need to ensure data is where it is meant to be when it is 
meant to be there. This means mechanisms must be designed to ensure nodes do not remove old 
data over time. 

Storage Price Discovery – And nodes expect to be paid for the on-going storage of files.  

Persistent Data Redundancy – While networks need to know where data is located, by nature of 
public open networks nodes will continually leave the network and new nodes will continually join the 
network. Hence, apart from ensuring a single node is storing what they are meant to be storing when 
they are meant to be storing it, the network needs to ensure that when a node leaves and its data 
disappears, sufficient copies of the data or data fragments are maintained across the network. 



Fundamental Labs 

  18 

Data Transmission – Then, when the network connects to nodes to retrieve data that is requested (by 
a user or for data maintenance workloads), the nodes that are storing the data must be willing to 
transmit the data, as bandwidth also comes at a cost. 

Network Tokenomics – Finally, apart from ensuring that data resides within a network, the network 
must ensure that the network itself will be around for a long time. If the network were to disappear, it 
would take all data with it – hence strong tokenomics are necessary to ensure network permanence, 
and thus data availability, over the long term. 
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Section 3:  

Overcoming Challenges 
of Data Decentralization  
Note: For a detailed technical introduction to each of the below projects, please consult section 4. 

In this section, I compare and contrast various aspects of decentralized storage network design of 
IPFS, Filecoin, Crust Network, Arweave, Sia, Storj, and Swarm and how they overcome the 
aforementioned challenges. This reflects well-established as well as up-and-coming decentralized 
storage networks that use a wide range of technologies to achieve decentralization. 

Below tables summarize both technical aspects and tokenomics of each network, that will be covered 
in greater detail throughout this section, as well as what the writer believes are strong use cases of 
these chains following their various design-elements. 

 
Figure 13: Summary of technical design decisions of reviewed storage networks 

Technical

Data Storage 
Approach

Erasure encoding
Data split into pieces 
hashed into merkle tree

Erasure encoding Full piece of data Erasure encoding Erasure encoding

Data 
Replication

User-defined Replication 
Factor

Network-dictated 
Replication

Encoded fragments 
stored across network

Network-dictated 
Replication

Encoded fragments 
stored across network

Encoded fragments 
stored across 
neighborhood

Storage 
Tracking

Blockchain & Node 
Gossip

Blockchain & Node 
Gossip

Blockchain & Node 
Gossip

Blockchain-like 
"blockweave"

Satellite Nodes Embedded in data chunk

Proof of Data 
Stored

Proof of Replication 
(PoRep)

Meaningful Proof of Work 
(MPoW) + Guaranteed 
Proof of Stake (GPoS)

Proof of Storage (PoS) of 
hashed fragments

Proof of Access (PoA) Audits of Data Fragments Merkle Tree Root Hash

Data 
Availability 
over Time

Proof of Spacetime 
(PoSt) + 
pledged collateral + 
recurring payments

Meaningful Proof of Work 
(MPoW) + Guaranteed 
Proof of Stake (GPoS) + 
recurring payments

Proof of Storage (PoS) of 
hashed fragments & 
recurring payments + 
pledged collateral + 
recurring payments

Proof of Access (PoA) + 
Endowment

Audits of Data Fragments 
+ 
Revenue Withholding + 
recurring payments

Verified Locked Stake + 
Proof of Ownership + 
RACE raffle + 
recurring payments

Storage Price 
Discovery

Storage Market
Decentralized Storage 
Market (DSM)

Storage Market Dynamic Network Pricing Set by Storage Nodes
Dynamically with Smart 
Contracts

Persistent Data 
Redundancy

Storage order 
reintroduction

n/a
(in development)

Manual fragment 
replenishment

Proof of Access Data repair Neighborhood replication

Incentivizing
Data 
Transmission

Retrieval miners + 
retrieval market

IPFS BitSwap + 
Incentivization

Users pay for bandwidth Wildfire Users pay for bandwidth SWAP protocol

@0xPhillan
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Figure 14: Summary of tokenomics design decisions of reviewed storage networks 

 
Figure 15: Summary of strong uses-cases for reviewed storage networks 

Due to many concepts being closely interlinked within each protocol design, it is not possible to 
clearly split out each challenge, hence there is some overlap between sub-sections. 

Data Storage Format and Replication of Data 

Data format and the replication of data refers to how data is stored on a single node instance, and 
how data is spread across multiple nodes when a user or application requests to store a file 
(henceforth users and applications will be collectively referred to as users or clients). This is an 
important distinction, as data can also be stored on a node as a result of data maintenance 
procedures initiated by the network or other network actors. 

In below table we can see a brief overview of how the protocols store data: 

 
Figure 16: Data storage approach and data replication of reviewed storage networks 

Tokenomics

Mainnet Launch 2020/10 2021/09 2015/06 2018/06 2014 2021/06
Token Symbol FIL CRU SC (Siacoin) AR STORJ BZZ

Primary Token Utility (User)
Pay for storage and 
bandwidth

Pay for storage and 
guarantor staking

Pay for storage and 
bandwidth

Pay for storage
Pay for storage and 
bandwidth

Pay for storage

Market Cap
(as of June 1st, 2022) 1,695 million USD 4 million USD 294 million USD 742 million USD 86 million USD 38 million USD

Tokenomic Model Inflationary emmissions Inflationary emmissions Inflationary emmissions Inflationary emmissions Fully-preminted Bonding Curve
Token Cap 2 million FIL Perpetually inflating Perpetually inflating 66 million AR 425 million STORJ 115.6 million BZZ

Simple minting 
(inflationary emmissions)

Inflationary emmissions Inflationary emmissions Inflationary emmissions
Quarterly unlocking 
tranches

n/a

Baseline minting (storage 
capacity driving 
inflationary emmissions)

n/a
Inflationary emmissions 
subsidizing Sia 
Foundation

n/a n/a n/a

Deflationary Pressure
Burn miner 
pledged collateral

Burn validator stake
Proof of Burn (storage 
node revenue burning)

n/a n/a n/a

Utility-Driven
Token Lock-Ups

Pledged collateral, 
long-term storage order

Staked collateral, 
long-term storage order

Pledged collateral, 
long-term storage order

Endowment
(long-term storage order)

Pledged collateral, 
long-term storage order

Pledged collateral, 
storage promise (long-
term storage order)

Other Mechanics n/a n/a n/a n/a
Tranche relocking if Storj 
Labs does not require 
additional funding

n/a

Notes: Market Cap figures from Coingecko on June 1st, 2022, other details from Project official sources;

Inflationary Pressure

@0xPhillan

Strengths

Use-case Cold storage Hot storage Privacy Permanence AWS replacement Ethereum storage

@0xPhillan

Technical

Data Storage 
Approach

Erasure encoding
Data split into pieces 
hashed into merkle tree

Erasure encoding Full piece of data Erasure encoding Erasure encoding

Data 
Replication

User-defined Replication 
Factor

Network-dictated 
Replication

Encoded fragments 
stored across network
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From the above projects, Filecoin and Crust use the Interplanetary File System (IPFS) as the network 
coordination and communication layer for transmitting files between peers and storing files on nodes. 
IPFS and Filecoin were both developed by protocol labs. 

When new data is to be stored on the Filecoin network, a storage user must connect to a storage 
provider through the Filecoin storage market and negotiate storage terms, before placing a storage 
order. The user must then decide which type of erasure encoding (EC) is to be used and the replication 
factor thereof. With EC, data is broken down into constant-size fragments, which are each expanded 
and encoded with redundant data, so that only a subset of the fragments are required to reconstruct 
the original file. The replication factor refers to how often the data should be replicated to more 
storage sectors of the storage miner. Once the storage miner and the user agree on the terms, the 
data is transmitted to a storage miner and is stored in a storage miner’s storage sector. 

 
Figure 17: Data replication and erasure encoding of data 

If users want to further increase redundancy, they need to engage in additional storage deals with 
additional storage providers, as there still exists the risk that one storage miner goes offline and with 
it all of their pledged storage sectors. Applications such as NFT.Storage and Web3.Storage built by 
Filecoin on the Filecoin protocol solve this by storing files with multiple storage miners, however at a 
protocol level users must manually engage with multiple storage miners. 

In contrast, Crust replicates data to a fixed number of nodes: when a storage order is submitted the 
data is encrypted and sent to at least 20 Crust IPFS nodes (the number of nodes can be adjusted). On 
each node the data is split into many smaller fragments which are hashed into a Merkle tree. Each 
node keeps all fragments that make up the full file. While Arweave also uses replication of full files, 
Arweave takes a somewhat different approach. After a transaction is submitted to the Arweave 
network, first one single node will store the data as a block on the blockweave (Arweave’s 
manifestation of a blockchain). From there a very aggressive algorithm called Wildfire ensures the 
data is replicated to rapidly across the network, because in order for any node to mine the next block, 
they must prove they have access to the previous block. 
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Figure 18: The data storage format will impact retrieval and reconstruction 

Sia, Storj, and Swarm use erasure encoding (EC) to store files. With Crust’s implementation, 20 full 
data sets are stored across 20 nodes. While this is extremely redundant and makes the data highly 
durable, this is highly inefficient from a bandwidth perspective. Erasure encoding presents a much 
more efficient means of achieving redundancy, by improving data durability without a large 
bandwidth impact. 

Sia and Storj directly propagate EC fragments to a specific number of nodes to meet certain durability 
requirements. Swarm, on the other hand, manages nodes in a way that nodes that are in closer 
proximity form a neighborhood, and those nodes proactively share data chunks (the specific fragment 
format used in Swarm) among each other. If there is popular data that is being recalled from the 
network often, other nodes are incentivized to store the popular chunks as well – this is called 
opportunistic caching. As a result, in Swarm it’s possible to have a far greater number of data 
fragments in the network than what is considered a minimum “healthy” amount. While this does have 
bandwidth implications, this can be considered front-loading future retrieval requests by reducing the 
distance to the requesting node. 
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Storage Tracking 

After data has been stored, either to one or many nodes, the network needs to know where the data is 
stored. This way when users request to retrieve their data, the network knows where to look. 

 
Figure 19: Storage tracking of reviewed storage networks 

Filecoin, Crust, Sia, and Arweave all use a blockchain or a blockchain-life structure to manage storage 
orders and keep a record of every storage request placed on the network. In Filecoin, Crust and Sia 
storage proofs (i.e., proof that files have been stored by a miner, are stored on chain). This allows 
these networks to know where which data is located at any point in time. With Arweave, the network 
incentivizes all nodes to store as much data as possible, however, nodes are not required to store 
every single piece of data. Because Arweave stores data as blocks on their blockchain and nodes are 
not required to store all data, nodes can be missing some data which can be retrieved at a later time. 
Hence why Arweave’s blockweave is a “blockchain-like” structure. 

On Filecoin, Crust and Sia, storage nodes all maintain a local table with details of which storage nodes 
store which data. This data is regularly updated amongst nodes by gossiping amongst each other. For 
Arweave, however, when content is requested nodes are requested opportunistically instead of 
reaching out to specific nodes that are known to save the content. 

Storj and Swarm both do not have their own layer 1 blockchain and hence track storage in a different 
way. In Storj, storage order management and the storage of files are split between two different types 
of nodes, namely satellites and storage nodes. Satellites, which can be a single server or a redundant 
collection of servers, only tracks data which users have submitted to them for storage, and only store 
it on storage nodes that have entered an agreement with them. Storage nodes can work with multiple 
satellites and store data from multiple satellites. This architecture means that in Storj to store files, no 
network-wide consensus is needed, which means increased efficiency and fewer computing resources 
are required to store data. However, this also means that if a satellite goes offline, the data managed 
by that satellite will be inaccessible. Hence it is recommended that a satellite be comprised of 
multiple redundant servers. 

In Swarm, the address of data stored is directly recorded in the hash of each chunk in the data to 
chunk conversion process. Since chunks are stored across nodes in the same address space (i.e. 
neighborhood), the neighborhood of a file can be identified simply by the chunk hash itself. This 
means that a separate tracking mechanism of where which files are stored is not necessary, as the 
storage location is implied by the chunk itself.  
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Proof of Data Stored, Availability Over Time, and Storage Price 
Discovery 

Apart from the network knowing where data is stored, the network must have a way to verify that the 
data that is meant to be stored on a specific node is indeed stored on that specific node. Only after 
that validation has occurred can the network employ other mechanisms to ensure that the data 
remains stored over time (i.e., that storage nodes do not remove the data after the initial storage 
operation). Such mechanisms include algorithms that prove data is stored over certain period of time, 
financial incentivization for successfully concluding the duration of storage requests, and 
disincentivization of non-completion thereof, amongst others. It should be noted here that data 
availability over time does not equate to permanence, although permanent storage is a form of long-
term data availability. Finally, nodes expect to be paid for their storage efforts, which is reflected in 
the aforementioned incentivization mechanisms. 

 
Figure 20: Proof of data stored, availability over time, and pricing mechanisms of reviewed storage networks 

To illustrate both proof of data stored and how data availability is ensured over time, this section will 
look at the full storage process per protocol. 

Filecoin 

On Filecoin, before a storage miner can receive any storage requests, they must deposit collateral to 
the network which acts as a pledge to provide storage to the network. Once completed, miners can 
offer their storage on the Storage Market and set a price for their services. Users who want to store 
data on Filecoin can set their storage requirements (e.g., storage space required, storage duration, 
redundancy, and replication factor) and place an ask.  

The Storage Market then matches the client and the storage miner. The client then sends their data to 
the miner, who stores the data in a sector. The sector is then sealed, which is a process that 
transforms the data into a unique copy of the data called a replica that is associated with the public 
key of the miner. This sealing process ensures that every replica is a physically unique copy and forms 
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the basis of Filecoin’s Proof of Replication algorithm. This algorithm verifies the validity of storage 
proofs provided using the Merkle tree root of the replica and the hash of the original data.  

Over time storage miners are required to consistently prove their ownership of the stored data by 
regularly running this algorithm. However, consistent checks like this require a lot of bandwidth. The 
novelty in Filecoin is that to prove data is stored over time and reduce bandwidth usage, the miner 
generates proofs of replication in sequence, using the output of the previous proof as the input for the 
current proof. This is executed over a number of iterations that represent the duration that the data is 
meant to be stored for. 

Crust Network 

In Crust Network nodes must also first deposit collateral before they can take storage orders on the 
network. The amount of storage space a node provides to the network determines the maximum 
amount of collateral, which is staked and allows the node to participate in creating blocks on the 
network. This algorithm is called Guaranteed Proof of Stake, which guarantees that only nodes that 
have a stake in the network can provide storage space.  

Nodes and users are automatically connected to the Decentralized Storage Market (DSM) that 
automatically chooses which nodes to store the user’s data on. Storage prices are determined based 
both on user requirements (e.g. storage duration, storage space, replication factor) and network 
factors (e.g. congestion). When a user submits a storage order, the data is sent to a number of nodes 
across the network, which split the data and hash the fragments using the machine’s Trusted 
Execution Environment (TEE). Since the TEE is a sealed off hardware component that even the 
hardware owner cannot access, there is no way the node owner can reconstruct the files on their own. 

After the file is stored on the node a work report which includes the hashes of the files is published to 
the Crust blockchain, together with the remaining storage of the node. From here to ensure data is 
stored over time the network regularly requests random data checks: within the TEE a random Merkle 
tree hash is retrieved together with the relevant file fragment, which is decrypted and re-hashed. The 
new hash is then compared against the expected hash. This implementation of storage proofs is 
called Meaningful Proof of Work (MPoW). 

Sia 

As is the case in Filecoin and Crust, storage nodes must deposit collateral to be able to offer storage 
services. On Sia, the node must decide how much collateral to post: the collateral directly impacts the 
storage prices for users, but at the same time posting a low collateral means the node has nothing to 
lose if they disappear from the network. These forces drive nodes towards an equilibrium collateral. 

Users are connected to storage nodes through an automatic storage marketplace, which functions in 
a similar way to that of Filecoin: nodes set their storage prices, and users set their expected prices 
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based on their target price and expected storage duration. Users and nodes are then automatically 
connected with each other. 

After a user and nodes agree on a storage contract, the funds are locked in the contract and the data is 
split into segments using erasure encoding, each segment is hashed individually using different 
encryption keys and each piece is then replicated on several different nodes. The storage contract 
which is recorded on Sia’s blockchain records the agreed terms as well as the data’s Merkle tree hash. 
From there to ensure that data is stored for the expected storage duration, storage proofs are 
regularly submitted to the network. These storage proofs are created based on a randomly selected 
portion of the originally stored file and a list of hashes from the file’s Merkle tree that is recorded on 
the blockchain. Nodes are rewarded for every storage proof they can submit over time, and finally 
upon completion of the contract. 

On Sia, storage contracts can last a maximum of 90 days. To store files beyond 90 days, users must 
connect to the network manually using the Sia client software to extend contracts by another 90 days. 
Skynet, another layer on top of Sia similar to Filecoins Web3.Storage or NFT.Storage platforms, 
automates this process for the user by having Skynet’s own instances of the client software execute 
contract renewals for users. While this is a workaround, it is not a Sia protocol level solution. 

Arweave 

Arweave uses a very different pricing model compared to the previous solutions, as Arweave does not 
allow for temporary storage: on Arweave, all data stored is permanent. On Arweave, the storage price 
is determined by the cost of storing data on the network for 200 years, assuming that annually those 
costs reduce by -0.5%. If the cost of storage reduces more than -0.5% in a year, the savings are used to 
append additional years of storage to the end of the storage duration. In Arweave’s own estimates, 
the -0.5% annual reduction in storage costs is very conservative. If reductions in storage costs are 
perpetually greater than Arweave’s assumption, then the storage duration will continue to grow 
infinitely, making the storage permanent.  

The price of storing files on Arweave is dynamically determined by the network, based on the 
previously mentioned 200-year storage cost estimate and the difficulty of the network. Arweave is a 
Proof-of-Work (PoW) blockchain, meaning that nodes must solve a cryptographic hash puzzle to mine 
the next block. If more nodes join the network, solving the hash puzzle becomes more difficult, thus 
more computational resources are needed to solve the puzzle. The dynamic price-difficulty 
adjustments reflect the cost of the additional computational power to ensure nodes remain 
motivated to stay on the network to mine new blocks. 

If a user accepts the price to store files on the network, nodes accept the data and write it to a block. 
This is where Arweave’s Proof-of-Access algorithm comes into play. The Proof-of-Access algorithm 
works in two phases: first, the node must prove they have access to the previous block in the 
blockchain, then they must prove access to another block that is selected at random called the recall 
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block. If the node can prove access to both blocks, they enter the PoW phase. In the PoW phase only 
the miners that could prove access to both blocks start to try to solve the cryptographic hash puzzle. 
When a miner successfully solves the puzzle, they write the block – and thus the data – to the 
blockchain. From here, for nodes on the network to be able to mine the next block, they must include 
the freshly mined block. As a result, the new block and it’s data is rapidly permeated across the 
network. 

The miner then receives transaction fees for including the data and block rewards from network token 
emissions. Apart from the transaction fees, the rest of the price paid by the user is stored in an 
endowment, which is paid out to miners that hold the data over time. This is only paid out when the 
network deems that transaction fees and block rewards are not enough to make mining operations 
profitable. This creates a float of tokens in the endowment, which further extends the 200-year 
minimum storage duration. 

In Arweave’s model there is no tracking of storage locations. As a result, if a node does not have access 
to the data that is being requested, it will ask nodes in a peer list that it maintains locally for the block 
data. 

Storj 

In the Storj decentralized storage network, there is no blockchain or block-chain like structure. Not 
having a blockchain also means that this network does not have network-wide consensus about its 
state. Instead, tracking data storage locations is handled by satellite nodes, and the storage of data is 
handled by storage nodes. Satellite nodes can decide which storage nodes to work with to store data, 
and storage nodes can decide which satellite nodes to accept storage requests from.  

Apart from handling the tracking of data locations across storage nodes, satellites are also 
responsible for billing and payment of storage and bandwidth usage to storage nodes. In this 
arrangement, storage nodes set their own prices and as long as users are willing to pay those prices, 
satellites connect them with each other. 

When a user wants to store data on Storj, the user must select a satellite node to connect to and share 
their specific storage requirements. The satellite node will then pick out storage nodes that meet the 
storage requirements and connect the storage node with the user. The user then directly transmits 
the files to the storage nodes, while making payment to the satellite. The satellite then pays out 
storage nodes every month for the files held and the bandwidth used. 

To ensure storage nodes are continuously storing the data fragments they are meant to be storing, 
satellites run regular audits on the storage nodes. The satellite, which does not store any data, selects 
a random piece of a file fragment before erasure encoding is applied and asks all nodes that store an 
erasure encoded fragment to validate the data. When sufficient nodes return data, the satellite can 
identify nodes that report faulty data. 
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To prevent nodes from disappearing and taking data offline as well as ensuring they consistently 
verify file fragments through audits, Storj satellites withhold large portions of storage node revenue 
making it financially unviable to leave the network early or to fail audits. As nodes stay in the network 
for longer, the proportion of withheld revenue is released. Only when a storage node determines that 
they want to leave the network after at least 15 months of operation and the storage node signals to 
the network that they want to leave the network allowing the network to move all data, does the 
network return remaining withheld funds. 

Swarm 

While Swarm does not have a layer 1 blockchain for tracking storage requests, storing files on Swarm 
is handled through Smart Contracts on Ethereum. As a result, storage orders with some details about 
the files can be tracked. And because in Swarm the address of each chunk is included in the chunk, the 
neighborhood of the chunk can also be identified. So, when data is requested, nodes within a 
neighborhood communicate with each other to return the chunks requested by the user. 

Through client software, Swarm lets users determine the amount of data and duration that data is 
meant to be stored on Swarm and is calculated using smart contracts. When data is stored on Swarm, 
the chunks get stored on a node and are then replicated to other nodes in the same neighborhood as 
the uploading node. When the data is stored on the nodes it gets split into chunks, which map the 
data to a chunk tree, which builds up a Merkle tree, for which the root hash of the tree is the address 
that is used to retrieve the file. Hence, the root hash of the tree is proof that the file was properly 
chunked and stored. Every chunk in the tree further has an inclusion proof embedded, which proves 
that a chunk is part of a specific chunk tree and can be used as proof of custody if evidence needs to 
be provided that a node owns a specific chunk of uploaded data. 

Nodes that want to sell long-term storage (aka promissory storage) must have a stake verified and 
locked-in with an Ethereum-based smart contract at the time of making their promise – essentially a 
security deposit. If, during the promise period, a node fails to prove ownership of the data they 
promised to store, they lose their entire security deposit. 

Finally, to further ensure data isn’t removed over time, Swarm employs a random lottery, where 
nodes are rewarded for holding a random piece of data that is picked through Swarm’s RACE lottery 
system. 

Persistent Data Redundancy 

If data is stored on a certain number of nodes, it can be assumed that in the long-term as nodes leave 
and join the network, this data will eventually disappear. To combat this, nodes must ensure that 
data, in whatever form it is stored, is regularly replicated to consistently maintain a minimum level of 
redundancy over the user-defined storage duration. 
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Figure 21: Data persistence mechanisms of reviewed storage networks 

At every block mined on the Filecoin network, the network checks that required proofs for stored data 
are present and that they are valid. If a certain failure threshold is crossed, the network considers the 
storage miner faulty, marks the storage order as failed, and reintroduces a new order for the same 
data on the storage market. If the data is deemed to be unrecoverable, the data is lost and the user 
gets refunded. 

Curst Network, being the youngest network of those reviewed with a Mainnet launch in September 
2021, does not yet have a mechanism to replenish file redundancy over time, but this mechanism is 
currently in development.  

On Sia, the number of erasure encoded fragments available on the network is converted into a health 
indicator. As nodes and thus erasure encoded fragments disappear over time, the health of a piece of 
data reduces. To ensure that health remains high, users must manually open the Sia client, which 
checks the health status and if it is not at 100%, the client replicates the data fragments to other 
nodes on the network. Sia recommends opening the Sia client once a month to run this data repair 
process to avoid data falling below an unrecoverable threshold of fragments and the data ultimately 
disappearing from the network. 

Storj follows a similar approach to that of Sia, but instead of having the user take action to ensure 
sufficient erasure encoded file fragments are on the network, satellite nodes take over this job. 
Satellite nodes regularly execute data audits on the fragments stored on storage nodes. If an audit 
returns faulty fragments, the network will reconstruct the file, regenerate the missing pieces and store 
them back on the network. 

For Arweave, consistent data redundancy is achieved through the Proof of Access algorithm that 
requires nodes to store older data to be able to mine newer data. This requirement means that nodes 
are incentivized to search and keep older and “rare” blocks, to increase their chances of being allowed 
to mine the next block and receive mining rewards.  

Finally, Swarm ensures persistent redundancy by neighborhood replication as the key measure 
against data disappearing over time. Swam requires each set of nearest neighbors of a node to hold 
replicas of that nodes data chunks. Over time as nodes leave or join the network, these 
neighborhoods reorganize and each node’s nearest neighbors gets updated, requiring them to re-sync 
the data on their node. This leads to eventual data consistency. This is a continually ongoing process 
that is executed entirely off-chain. 
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Incentivizing Data Transmission 

 
Figure 22: Mechanisms to promote data transmission of reviewed storage networks 

After users store data on a network, the data must also be retrievable when a user, another node, or a 
network process requests access to the data. After nodes receive and store data, they must be willing 
to transmit it when it is requested. 

Filecoin achieves this through a separate type of miner called a retrieval miner. A retrieval miner is a 
miner that specializes in serving pieces of data and is rewarded in FIL tokens for doing so. Any user in 
the network can become a retrieval miner (including storage nodes), and retrieval orders are handled 
through the retrieval market. When a user wants to retrieve data, they place an order on the retrieval 
market, and retrieval nodes serve it. Although Filecoin is built on the same underlying stack as IPFS, 
Filecoin does not use IPFS’s Bitswap exchange protocol for transmitting user data. Instead, the 
Bitswap protocol is used to request and receive blocks for the Filecoin blockchain.  

Crust directly uses IPFS’s Bitswap mechanism to retrieve data and motivate nodes to be willing to 
transmit data. In Bitswap, every node maintains credit and debt scores of nodes it communicates 
with. Nodes that only ask for data (for example when a user submits a data retrieval request) 
eventually have high enough debt that other nodes will stop reacting to its retrieval requests until it 
also starts to fulfill sufficient retrieval requests itself. Adding to this, in Crust Network the first four 
nodes that can provide proof of storage for data storage requests are awarded a proportion of the 
storage fees by the user that initiated the order, meaning that nodes benefit from being able to 
quickly receive data, which is contingent on how active they are in providing data. As a result, nodes 
are motivated to continuously fulfill data retrieval requests. 

Swarm’s SWAP protocol (Swarm Account Protocol) works in the same fashion as IPFS’s Bitswap 
mechanism, with additional functionality integrated. Here also nodes maintain local databases of 
other nodes’ bandwidth credits and debts, creating a service-for-service relationship between nodes. 
However, SWAP assumes that sometimes there just isn’t data needed from one of the nodes to re-
balance credit to debt ratio in the short term. To solve this, nodes can pay other nodes cheques to 
repay their debt. A cheque is an off-chain voucher that a node commits to pay another node, that can 
be redeemed for BZZ tokens through a smart contract on the Ethereum blockchain. 
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Figure 23: Swarm Accounting Protocol. Source: Swarm whitepaper. 

In both Sia and Storj, users pay for bandwidth that is used. In Sia, upload, download and repair 
bandwidth are paid by the user, while in Storj bandwidth required for upload is covered by the 
storage node. In Storj, this is meant to discourage nodes from deleting data immediately after it has 
been received. Due this set up, nodes have no reason to avoid using bandwidth, as bandwidth is paid 
for at a price they dictate before accepting storage orders. 

Finally, in Arweave, nodes rationalize their bandwidth allocation based on how reliably a peer node 
shares transactions and blocks and how reliably it responds to requests. The node then keeps track of 
these factors for all peer nodes it interacts with, and preferably communicates with peer nodes that 
score higher. This promotes willingness for nodes to transfer data and share information, as receiving 
blocks in a slower fashion means they have less time compared to other nodes to solve the 
cryptographic hash puzzle of Arweave’s PoA consensus algorithm. 

Tokenomics 

Finally, networks must decide on a tokenomics design. While the above ensures data will be available 
whenever it should be available, tokenomics design ensures that the network will be around in the 
future. As without the network, there would be no underlying data for users and hosts to interact with. 
Here we will take a closer look at what tokens are used for and the factors that impact token supply. 

Note: while all the above sections affect tokenomics design, here we primarily focus on token utility 
and token emissions design 
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Figure 24: Tokenomics design decisions of reviewed storage networks 

In the Filecoin network, the FIL token is used to pay for storage orders and retrieval bandwidth. The 
Filecoin network has an inflationary token emissions model using two types of minting: Simple 
minting, which emits new tokens as block rewards on a 6-year halving schedule (compared to 
Bitcoin’s 4 years) and baseline minting, which creates additional token emissions if the network 
reaches total storage space milestones (see figure 23). This means that storage miners on the network 
are incentivized to provide as much storage to the network as possible. 

There are two ways that circulating supply of FIL on the market can be reduced. If miners fail to live up 
to their commitments, their pledged collateral is burned and permanently removed from the network 
(30.5 million FIL at time of writing). Finally, time-locked storage orders temporarily remove FIL from 
circulation and are paid out to miners over time. This means that the more storage is used, the fewer 
coins are in circulation in the short-term creating deflationary price pressure on the token value. 

 
Figure 25: Max and Min Minting from Storage Mining and Max Baseline Minting. Source: https://filecoin.io/blog/filecoin-circulating-supply/ 

In Crust Network, the CRU token is used to pay for storage orders and used for staking as part of Crust 
Network’s Guaranteed Proof of Stake (GPoS) consensus mechanism. In this model, network token 
emissions are also inflationary and used as block rewards. Crust Network, however, does not have a 
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token cap – for 12 years inflation is reduced YoY, after which token inflation continues perpetually at 
2.8%. 

In Crust, the stake a validator and its guarantors lock also acts as pledged collateral. If it is detected 
that a validator acts maliciously or is unable to provide the required proofs, their stake is slashed and 
burned. Finally, staked collateral and time-locked storage orders temporarily remove tokens from 
circulation. Since miner network storage capacity determines a miner’s staking limit, miners are 
incentivized to provide more storage capacity to maximize their staking income proportional to other 
miners. Staked tokens and tokens locked in time-locked storage orders create deflationary price 
pressure on the token value. 

 
Figure 26: Crust Network token emissions. Source: Crust Economy Whitepaper 

(https://gw.crustapps.net/ipfs/QmRYJN6V5BzwnXp7A2Avcp5WXkgzyunQwqP3Es2Q789phF) 

Sia has two coins that are used in the network; one is the utility coin Siacoin and the other is a 
revenue-generating coin called Siafunds. Siafunds were sold to the public when the network first went 
live, and are mostly held by the Sia Foundation. Siafunds entitle holders to a certain % of revenue for 
every storage order placed on the network. Siafunds do not have a substantial impact on the 
tokenomics of Sia and are hence not covered further here. 

Siacoin has an inflationary token emissions model that act as block rewards, with no token cap. The 
block rewards perpetually decreased in a linear fashion per block until block height 270,000 (roughly 5 
years of operation; reached in 2020). From then onwards, every block includes a fixed block reward of 
30,000 SC.  In 2021 the Sia Foundation hard-forked the Sia network to include an additional 30,000 SC 
subsidy per block to fund the Sia Foundation, a non-profit entity meant to support, develop, and 
promote the Sia network. 

https://gw.crustapps.net/ipfs/QmRYJN6V5BzwnXp7A2Avcp5WXkgzyunQwqP3Es2Q789phF
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Figure 27: Annual growth of Siacoin supply and Foundation coin minting. Source: https://siastats.info/macroeconomics 

Sia also uses a Proof of Burn mechanism, that requires miners to burn 0.5-2.5% of their revenue to 
prove there are legitimate nodes on the network. This creates downward pressure on token supply, 
although annual burns only reflect roughly 500k SC compared to 3.14 billion SC of token emissions. 
Finally, pledged collateral and long-term storage orders also temporarily remove tokens from 
circulation in Sia. 

The Arweave network’s native token is the AR token, which is used to pay for perpetual and 
theoretically permanent storage on the Arweave network. Arweave also uses an inflationary token 
model, with a maximum supply cap of 66 million AR tokens. In Arweave, the primary deflationary 
impact is driven by Arweave’s endowments, which is Arweave’s implementation of a long-term 
storage contract. When a user wants to store files on Arweave, only a small amount of the storage fee 
goes to the miner – the rest is placed into an endowment which covers at least 200 years of storage 
time using Arweave’s highly conservative assumptions. That means, any storage order that is placed 
locks tokens away for at least 200 years, and is slowly paid out over this 200 year duration. 

 
Figure 28: AR token inflation and team allocation. Source: https://medium.com/amber-group/arweave-enabling-the-permaweb-

870ade28998b 

In Storj, the STORJ token is used to pay for storage and bandwidth. All 425 million STORJ tokens are 
pre-minted as ERC20 tokens on the Ethereum network. Previously, the Bitcoin-based SJCX token was 
used, however, in 2017 Storj Labs converted moved their tokens to Ethereum and renamed the ticker 

https://siastats.info/macroeconomics
https://medium.com/amber-group/arweave-enabling-the-permaweb-870ade28998b
https://medium.com/amber-group/arweave-enabling-the-permaweb-870ade28998b
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to STORJ. Of the STORJ tokens, currently 190.8 million STORJ tokens are locked up in six smart-
contract controlled tranches in Storj Labs’ custody, while 234.1 million STORJ tokens are unlocked. 
Every quarter a tranche is unlocked, and when Storj Labs deems they do not need the funds to finance 
operations, they re-lock a tranche. This means that nearly half of STORJ supply is in direct control of 
Storj Labs, however, if they wanted to cash out they would have to wait 6 quarters, due to the funds 
being locked behind smart contracts. In Storj, pledged collateral by storage nodes and long-term 
storage orders also drive down circulating supply, as these tokens get temporarily locked-up. 

 
Figure 29: Tranche relocking schedule. Source: https://www.storj.io/blog/using-timelocked-tokens-to-support-long-term-sustainability 

Finally, Swarm uses the BZZ token as a utility token to pay for storage on the network. The 
tokenomics model deployed by Swarm is a bonding curve, which determines the price of the token 
based on the supply thereof. Users can sell their tokens back to the bonding curve at any time at 
current market price. In Swarm, long-term storage orders require collateral to be pledged in the form 
of “promises”. Similar to the previous networks, more storage usage means fewer tokens available on 
the market, which would have deflationary pressures on the token price, as users who want to buy the 
token must purchase from the bonding curve, which will increase the price with every additional 
token sold. 

 
Figure 30: Shape of BZZ bonding curve. Source: https://medium.com/ethereum-swarm/swarm-and-its-bzzaar-bonding-curve-ac2fa9889914 

https://www.storj.io/blog/using-timelocked-tokens-to-support-long-term-sustainability
https://medium.com/ethereum-swarm/swarm-and-its-bzzaar-bonding-curve-ac2fa9889914
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Discussion 

It is impossible to say that one network is objectively better than another. When designing a 
decentralized storage network, there are countless trade-offs that must be considered. While Arweave 
is great for permanent storage of data, Arweave is not necessarily suitable to move Web2.0 industry 
players to Web3.0 – not all data needs to be permanent. However, there is a strong sub-sector of data 
that does require permanence: NFTs and dApps. 

If we look at other networks, we witness similar trade-offs: Filecoin is incentivizing Web2.0 storage 
providers to move their Storage to Web3.0 and is thus a driving a force in the adoption of 
decentralization. Filecoin’s Proof of Spacetime algorithm is computationally heavy with slow write 
speeds, which means that it is more suitable for higher-value data (like their slogan “storing 
humanity’s most important data”) that does not change often. However, many applications require 
constant changes to their data. Crust Network fills this gap by providing storage that is 
computationally less intensive to prove. 

Looking at how these projects store data, we can see that Crust Network and Arweave are the only 
ones that do not use erasure encoding. One may think that erasure encoding is the better option, due 
to the majority of projects using it, but that is not necessarily the case. Arweave does not need erasure 
encoding, as the Proof of Access consensus mechanism paired with the Wildfire mechanic ensures 
data is replicated aggressively across the network. On Crust Network data is replicated to at least 20 
nodes, and in many cases to over 100 nodes. While this does have greater up-front bandwidth, being 
able to retrieve data from a large number of nodes simultaneously makes file retrieval fast and adds 
strong redundancy in case of failures or nodes leaving the network. Crust Network needs this high 
level of redundancy, because it does not yet have a data replenishment or repair mechanism like the 
other chains. Of the decentralized storage networks reviewed here, Crust Network is the youngest. 

If we compare any project to Filecoin, we will see other chains support a higher degree of storage 
decentralization, but may be more centralized in other aspects, such as Storj in which a single satellite 
node can control a large cluster of storage nodes. If that satellite node goes offline, all access to files is 
lost. However, having satellites control repair processes autonomously is a huge upgrade compared 
with the manual repair processes required in Sia. Storj also gives Web2.0 users an easier first step into 
decentralized storage, by allowing any form of payment between users and satellites.  

If we further compare Storj’s approach to decentralization to that of the other projects, we will see 
that Storj’s lack of system-wide consensus is indeed a purposeful design decision to increase network 
performance, as the network does not need to wait on consensus to proceed with fulfilling storage 
requests. 

Swarm and Storj are the only protocols that do not have their own layer1 blockchain network, and 
instead rely on ERC20 tokens deployed on the Ethereum network. Swarm is directly integrated in the 
Ethereum network, with storage orders being directly controlled through Ethereum smart contracts. 
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This makes Swarm a strong choice for Ethereum native dApps and for storing the metadata of 
Ethereum-based NFTs, due to the convenience of proximity and same environment. Storj, while also 
based on Ethereum, is not that heavily integrated into the Ethereum ecosystem, however, can also 
benefit from smart contracts. 

Sia and Filecoin use a storage market mechanism where storage providers can set their prices and are 
matched with storage users that are willing to pay those prices based on specific requirements, while 
in the other network storage pricing is protocol-dictated based on network-specific factors. Using a 
storage market means that users get greater choice regarding how their files are stored and secured 
but having the price set by the network reduces complexity and makes for an easier user experience. 
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Conclusion 
There is no single best approach for the various challenges decentralized storage networks face. 
Depending on the purpose of the network and the problems it is attempting to solve, it must make 
trade-offs on both technical and tokenomics aspects of network design. 

 
Figure 31: Summary of strong uses-cases for reviewed storage networks 

In the end, the purpose of the network and the specific use-cases it attempts to optimize will 
determine the various design decisions.  

Comparative Network Profiling 

What follows are summative profiles of the various storage networks comparing them amongst each 
other on a set of scales defined below. The scales used reflect comparative dimensions of these 
networks, however it should be noted that the approaches to overcome challenges of decentralized 
storage are in many cases not better or worse, but instead merely reflect design decisions. 

• Storage parameter flexibility: the extent to which users have control over file storage 
parameters 

• Storage permanence: the extent to which file storage can achieve theoretical permanence by 
the network (i.e., without intervention) 

• Redundancy persistence: the networks ability to maintain data redundancy through 
replenishment or repair 

• Data transmission incentivization: the extent to which the network ensures nodes 
generously transmit data 

• Universality of storage tracking: the extent to which there is a consensus among nodes 
regarding the storage location of data 

• Assured data accessibility: the ability of the network to ensure that a single actor in the 
storage process cannot remove access to files on the network 

Higher scores indicate greater ability in each of the above. 

  

Strengths

Use-case Cold storage Hot storage Privacy Permanence AWS replacement Ethereum storage

@0xPhillan
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Filecoin’s tokenomics support growing the total network’s storage space, which serves to store large 
amounts of data in an immutable fashion. Furthermore, their storage algorithm lends itself more to 
data that is unlikely to change much over time (cold storage).  

 
Figure 32: Summative profile of Filecoin 

Crust’s tokenomics ensure hyper-redundancy with fast retrieval speeds which make it suitable for 
high traffic dApps and make it suitable for fast retrieval of data of popular NFTs. 

Crust scores lower on storage permanence, as without persistent redundancy its ability to deliver 
permanent storage is heavily impacted. Nonetheless, permanence can still be achieved through 
manually setting an extremely high replication factor. 

 
Figure 33: Summative profile of Crust 
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Sia is all about privacy. The reason manual health restoration by the user is required, is because nodes 
do not know what data fragments they are storing, and which data these fragments belong to. Only 
the data owner can reconstruct the original data from the fragments in the network. 

 
Figure 34: Summative profile of Sia 

In contrast, Arweave is all about permanence. That is also reflected in their endowment design, which 
makes storage more costly but also makes them a highly attractive choice for NFT storage.  

 
Figure 35: Summative profile of Arweave 
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Storj’s business model seems to heavily factor in their billing and payment approach: Amazon AWS S3 
users are more familiar with monthly billing. By removing complex payment and incentive systems 
often found in blockchain-based systems, Storj Labs sacrifices some decentralization but significantly 
reduces the barrier to entry for their key target group of AWS users.  

 
Figure 36: Summative profile of Storj 

Swarm’s bonding curve model ensures storage costs remain relatively low overtime as more data is 
stored on the network, and its proximity to the Ethereum blockchain make it a strong contender to 
become the primary storage for more complex Ethereum-based dApps.  

 
Figure 37: Summative profile of Swarm 
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The next frontier 

Returning to the Web3 infrastructural pillars (consensus, storage, computation), we see that the 
decentralized storage space has a handful of strong players that have positioned themselves within 
the market for their specific use cases. This does not exclude new networks from optimizing existing 
solutions or occupying new niches, but this does raise the question: what’s next? 

The answer is: computation. The next frontier in achieving a truly decentralized internet is 
decentralized computation. Currently only few solutions exist that bring to market solutions for 
trustless, decentralized computation that can power complex dApps, which are capable of more 
complex computation at far lower cost than executing smart contracts on a blockchain. 

Internet computer (ICP) and Holochain (HOLO) are networks that occupy a strong position in the 
decentralized computation market at time of writing. Nonetheless, the computational space is not 
nearly as crowded as the consensus and storage spaces. Hence, strong competitors are bound to 
enter the market sooner or later and position themselves accordingly. One such competitor is Stratos 
(STOS). Stratos offers a unique network design through its decentralized data mesh technology, 
combining blockchain technology with decentralized storage, decentralized computation and 
decentralized databases. 

We see decentralized computation, and specifically the network design of the Stratos network, as 
areas for future research. 
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Closing 
Thank you for reading this research piece on decentralized storage. If you enjoy research that seeks to 
uncover the fundamental building blocks of our shared Web3 future, consider following 
@FundamentalLabs on Twitter. 

Did I miss any interesting concepts, or other valuable information? Please reach out to me on Twitter 
@0xPhillan so we can enhance this research together. 

 

  

https://twitter.com/FundamentalLabs
https://twitter.com/0xPhillan
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Section 4:  

Decentralized Storage 
Networks Deep-Dive 
This section covers a technical deep-dive of the various storage networks covered in this research. 
This section is meant to give readers a high-level technical overview of each protocol and certain 
protocol mechanics. 

Note: In this section there is much overlap with the previous section, and it is intended to be a deeper 
dive into various aspects of these decentralized storage solutions. 
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IPFS-based storage solutions 

Filecoin, Crust and Pinata are all based on the Interplanetary File System (IPFS). IPFS, developed by 
Protocol Labs, is a popular decentralized file storage protocol that takes care of content addressing. 
This means IPFS can help users store files, as well as provide a way to find and retrieve those files, in 
the decentralized IPFS network. In simple terms, IPFS can be thought of as a communication protocol 
between nodes in a decentralized network that facilitates storage-related operations. 

While the above is an oversimplification, it helps to illustrate why IPFS-based storage solutions have 
emerged to begin with: IPFS does not have any incentive mechanisms built in for people to operate 
nodes or store your files. Node operators need to pay for storage space, computational power and 
bandwidth, and without an incentive system it becomes difficult for node operators to justify 
operating a node. 

The Interplanetary File System 

The IPFS protocol hashes data with metadata creating a unique identifier called a content ID (CID). 
Once that CID is created, the content in that CID is unique and becomes immutable: it cannot be 
changed. If a user would like to make changes to a file, they need to re-upload the file which will be 
hashed again and a new CID is created. So when you look for content hosted on IPFS, you are actually 
telling the IPFS network to retrieve a specific piece of content instead of retrieving the content at a 
specific location. 

IPFS nodes thus need a way to know where the content that a CID references is located. For this IPFS 
uses distributed hash tables (DHTs) and the Kademlia algorithm to map the addresses of peer nodes 
that hold specific content. When a user asks an IPFS node to retrieve the content of a CID, the node 
will query the DHT to retrieve addresses of all peers that have that particular CID. 

 
Figure 38: Brief overview of IPFS DHT and communication mechanism. Note: new nodes are bootstrapped with a list of common peers. 
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If content needs to be regularly refreshed (for example new versions of a dApp are released), instead 
of re-sharing a new CID, developers can use the Interplanetary Name System (IPNS) instead. In IPNS, a 
name is the hash of a public key. It is associated with a record containing information about the hash 
it links to that is signed by the corresponding private key. This way new records can be signed and 
published under one IPNS hash instead of sharing updated CIDs every time. 

The key weakness of IPFS is that content is only available as a node is willing to store the data. During 
the duration that the data is stored it is indeed immutable, i.e., the content referenced by a CID will 
never change. However, without any incentive, a node can remove the data or go offline entirely, 
making the content unavailable. Furthermore, to access IPFS content you need to either run your own 
node (you don’t need to broadcast content, but you will have DHTs that are regularly updated) or you 
need to communicate with an IPFS gateway, which is a node hosted by a third party that helps 
transmit the data you want to retrieve. 

Furthermore, IPFS automatically deletes files from a node after a specific period of time. To ensure 
nodes maintain copies of data stored on a node, those files need to be “pinned”. It is this pinning 
action that decentralized file storage providers use to store files for extended periods of time when 
using IPFS. 

The Brave browser makes this process seamless, so much so that retrieving data from a CID feels no 
different than surfing the web. While interacting with a gateway is inherently considered no riskier 
than surfing the web, certain risks that you face when browsing the internet are also present when 
interacting with an IPFS gateway. For example, a malicious gateway could lie about the content it is 
serving you or track specific content retrievals. 

 
Figure 39: Unavailable content through IPFS. https://ipfs.io/ipfs/QmVBEScm197eQiqgUpstf9baFAaEnhQCgzHKiXnkCoED2c 

The main strengths of IPFS are that the protocol is open source, enabling any project to use 
decentralized storage , and that it is easy to integrate into existing projects with a strong community 
that backs the technology. 

We will take a closer look at Filecoin, Crust Network and Pinata below, who use IPFS to enable 
decentralized storage. 

 

https://ipfs.io/ipfs/QmVBEScm197eQiqgUpstf9baFAaEnhQCgzHKiXnkCoED2c
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Filecoin 

Filecoin aims to be marketplace for data storage and retrieval, positioning itself to compete with data 
giants such as Amazon, Microsoft and Google and content delivery networks like Cloudflare. The 
Filecoin blockchain builds on the content addressing of IPFS to add long-term data persistence using 
cryptoeconomic incentives. Filecoin and IPFS are both developed by Protocol Labs. 

Token 

The FIL token is a utility token used to purchase storage and retrieval services, to incentivize nodes to 
provide and expand storage resources, and to maintain network consensus. 

Storage Technology & Consensus Mechanisms 

While Filecoin borrows technologies from IPFS such as content addressing, CIDs and Merkle DAGs, 
Filecoin nodes do not join or participate in the public IPFS DHT. On Filecoin, each CID refers to 32GB 
storage sector, and public IPFS nodes cannot view the contents of a CID without the right decryption 
provided by the Filecoin protocol. 

On Filecoin, below two algorithms do most of the heavy lifting: 

• Proof-of-Replication (PoRep): miners are rewarded in Filecoin if they can prove they've 
received the cryptographically stored information from the client (step 4 above). 

• Proof-of-Spacetime (PoSt): miners are rewarded and not slashed if they can prove that data in 
the client’s contract has been kept unchanged over a period of time.  

The PoRep algorithm allows for miners to proof that data has been replicated to their own unique 
dedicated storage. This allows for miners to prove that they are indeed storing the number of unique 
physical copies requested by clients. This is achieved by “sealing” every replica of data independently. 
This is achieved by requiring storage miners to store pseudo-random permutation of the stored data 
unique the miners public key. If a miner commits to storing a certain number of replicas, each replica 
will have its own unique pseudo-random permutation that makes it unique. 

Once files are properly stored and sealed, the miner generates the Merkle root of the replica and a 
proof of sealing. When the miner is challenged regarding whether or not they are indeed storing the 
content, the miner receives a random challenge which determines a specific leaf of the Merkle tree of 
the unique replica, based on the Merkle tree root. The miner then generates a proof of knowledge 
using the Merkle path that leads through the Merkle root. 

PoSt builds on this primitive and proves that the uniquely stored replica has been stored over a 
certain period of time. When a random challenge is received, the miner generated proofs of 
replication in sequence, using the output of a proof as an input of the next over a specific amount of 
iterations corresponding to the storage duration. The PoSt mechanism is used to audit miners to 
ensure they are storing the right data for the right amount of time. 
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To become a storage miner, miners must first pledge both a storage pledge and a consensus pledge as 
collateral. If miners misbehave either maliciously or negligently by not executing storage contract 
properly, their pledge is slashed and burned (removed from the total circulation of Filecoin) by the 
protocol. This acts both as a disincentive for malice, as well as providing deflationary pressure on the 
token. 75% of block rewards earned by miners vest linearly over 180 days while 25% are made 
immediately available to improve miner cash flow and profitability. 

In Filecoin, data storage is managed through storage contracts that are settled on the Storage Market 
– for more details please see the Storage Process & Pricing Mechanism section. 

Apart from storage miners, Filecoin has another class of miner: the retrieval miner. While storage 
miners are responsible for storing data, retrieval miners are responsible for retrieving data and 
serving it to clients. Retrieval miners are not required to pledge collateral to become a miner and thus 
many storage miners tend to also take on the role of retrieval miners. Retrieval miners can obtain data 
directly from clients, thus enabling third party storage services directly linked to certain retrieval and 
storage nodes,  or through the Retrieval Market. On the retrieval market, retrieval miners are 
rewarded in FIL tokens for retrieving and serving data to clients. 

The Filecoin network uses a public blockchain ledger to track all storage allocations of all network 
participants. Whenever a new block is mined, the network checks if the required proofs for all stored 
data is available and if it is valid. Under the circumstance that proofs are missing or invalid, the miner 
is penalized by having some of their collateral removed. From here, if a specific fault threshold is 
exceeded, the network settles the storage order as failed and attempts to retrieve the faulty data from 
other nodes in order place a new storage order to the Storage Market. If the network is unable to 
retrieve the faulty data (i.e., ever storage miner storing this piece is faulty), that means the data is lost. 
In this case, the client gets refunded. 

Storage Process & Pricing Mechanism 

When new data is to be stored on the Filecoin network, a storage user must connect to a storage 
provider through the Filecoin storage market and negotiate storage terms, before placing a storage 
order this is handled through Filecoin’s Storage Market. In the Storage Market, users must initiate a 
deal negotiation to start the storage process: 

1. Discovery - The client identifies miners and determines their current asks. 
2. Negotiation - Both parties come to an agreement about the terms of the deal, each party 

commits funds to the deal and data is transferred from the client to the provider. 
3. Publishing - The deal is published on chain, making the storage provider publicly accountable 

for the deal. 
4. Handoff - Once the deal is published, it is handed off and handled by the Storage Mining 

Subsystem. The Storage Mining Subsystem will add the data corresponding to the deal to a 
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sector, seal the sector, and tell the Storage Market Actor that the deal is in a sector, thereby 
marking the deal as active. 

During this process, the user decides which type of erasure encoding (EC) is to be used and the 
replication factor thereof. With EC, data is broken down into constant-size fragments, which are each 
expanded and encoded with redundant data, so that only a subset of the fragments are required to 
reconstruct the original file. The replication factor refers to how often the data should be replicated to 
more storage sectors of the storage miner. Once the storage miner and the user agree on the terms, 
the data is transmitted to a storage miner and is stored in a storage miner’s storage sector.  

If users want to further increase redundancy, they need to engage in additional storage deals with 
additional storage providers, as there still exists the risk that one storage miner goes offline and with 
it all of their pledged storage sectors. Applications such as NFT.Storage and Web3.Storage built by 
Filecoin on the Filecoin protocol solve this through storing files with multiple storage miners, however 
at a protocol level users must manually engage with multiple storage miners. 

Tokenomics 

• Baseline minting (770 million FIL): minted based on network performance relating to reaching 
storage capacity targets, incentivizing growing the network’s storage capacity 

• Simple minting (330 million FIL): minted independent on a 6-year half life based on time (97% 
minted in approximately 30 years) 

• Mining reserve (300 million FIL): community controlled reserve tokens, with the purpose of 
incentivizing future types of mining 

• Initial Coin Offering (200 million FIL): vesting over 3 years from protocol launch on October 
15th, 2020 

• Protocol Labs (300 million FIL) & Filecoin Foundation (100 million FIL): vesting over 6 years 
from protocol launch on October 15th, 2020 

• Total slashed (30.5 million FIL) as of time of writing (see https://filfox.info/en/address/f099) 

This gives us a (current) fully diluted circulation of FIL of roughly 1.97 billion tokens. The tokenomics 
are designed to incentivize storage and contract completion, while further incentivizing the expansion 
of total storage on the network. 

 
Figure 40: Max and Min Minting from Storage Mining and Max Baseline Minting. Source: https://filecoin.io/blog/filecoin-circulating-supply/ 

https://filfox.info/en/address/f099
https://filecoin.io/blog/filecoin-circulating-supply/
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Crust Network 

Crust Network aims to be the preferred storage network for Web3, acting as an interconnectivity and 
compatibility layer between blockchains and its own decentralized storage blockchain that interfaces 
with IPFS for file storage. Crust Network is built on the Substrate framework, primarily known from 
the Polkadot ecosystem. 

Token 

The CRU token is a utility token with the main functions of purchasing storage services and 
maintaining blockchain consensus through staking. 

Storage Technology & Consensus Mechanisms 

Crust Network is built on IPFS and participates in the public IPFS DHT. This means Crust Network IPFS 
nodes can be found by, and store CIDs and data of, non-Crust IPFS nodes. Crust further operates a 
network of IPFS public gateways to transmit and receive files. 

IPFS itself, however, does not incentivize long-term storage of data nor does it incentivize the 
transmission or replication of data. Simply speaking, IPFS can be considered a data transfer and 
retrieval framework. This is where the Crust Network protocol comes in. The Crust Network protocol 
essentially manages and incentivizes two networks simultaneously that nodes can mine;  

• the Crust Network blockchain (aka “verification network”),  
• the storage network, which uses IPFS 

Furthermore, Crust Network has two consensus mechanisms that run in parallel and require different 
proofs form the network: 

• Meaningful Proof of Work (MPoW): provides technical assurance for the trusted execution of 
code in the Trusted Execution Environment (TEE) 

• Guaranteed Proof of Stake (GPoS): manages storage orders and maintains blockchain 
consensus 

MPoW is responsible for the generation of two proof types that require network consensus, namely 
environment proof and workload proof, and runs within a node’s TEE. Simply put, the TEE is a 
hardware computing module on physical devices that is separated from the core processing units of 
the device. This module allows for verifiably untampered computing and can be used to retrieve 
information about the system or be used for complex calculations. The only limitation of joining the 
Crust Network therefore becomes whether the mining hardware supports TEE. 

The environment proof ensures that new nodes that join the network have a valid TEE instance, by 
using a public key generated within the TEE and other nodes on the network executing a remote 
attestation procedure. This uses the public key and data produced by the new node and compares 
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this against an expected result. If the results match, the new node passes the environment proof and 
the node identity and the TEE public key will be recorded on the Crust Network blockchain. 

The workload proof deals with both the storage of new files, and also handles random data checks 
executed by the network. When a user stores a file on Crust, an operation within the TEE called the 
inspector will split the file into multiple pieces, which are each encrypted and hashed into a Merkle 
tree. As a result, in a node’s external storage a node can only see encrypted file fragments and is not 
able to reconstruct the files stored on their own. When random data checks are initiated, the inspector 
algorithm within the TEE retrieves a random Merkle tree hash and relevant file fragment which is 
decrypted and re-hashed. Finally, the new hash is compared against the expected hash. The inspector 
not only checks file fragments stored on the nodes, but also the storage capacity of the node. 
Together these actions form a work report which is signed, verified by other nodes and recorded on 
the blockchain. If the file fragment cannot be retrieved or otherwise misbehaves, staked CRU is 
confiscated with a portion of the confiscated tokens being burned and the remainder being allocated 
as block rewards – more details regarding staking in Guaranteed Proof of Stake explanation further 
below. 

While in this model Proof of Work calculations are still executed, only meaningful calculations based 
on changes to the node’s storage state and validated through TEE are executed – hence the name 
Meaningful Proof of Work. 

The workload proof also has a Proof of Running Tracking (PoRT) algorithm which enables the tracking 
of computational workloads. Although not activated on the Crust Mainnet at this point in time, this 
algorithm can enable decentralized computing. 

The Guaranteed Proof of Stake (GPoS) consensus algorithm, which is essentially a proof of stake 
algorithm where nodes can only stake CRU tokens if they have provided storage capacity to the 
network, whereas staking capacity increases based on the total storage capacity provided to the 
network and proof that the nodes actively process storage orders from the network. In the network, 
MPoW generates environment and workload reports which are submitted to verifier nodes in the 
network as transactions, and using the GPoS consensus mechanism these verifier nodes then 
generate blocks and write them to the Crust Network blockchain. It should be noted here that by 
definition, verifier nodes must also provide storage resources (hence Guaranteed Proof of Stake). 

Within the GPoS consensus mechanism, a further node type is distinguished: candidate nodes. These 
are verifier nodes that are not qualified for block generation due to insufficient staked CRU tokens. At 
the end of each block generation cycle, candidate nodes may become verifier nodes if the meet the 
required staking quota. 

Finally, the last two participants in GPoS are guarantors and storage users. Guarantors can provide 
their CRU tokens to nodes on the network to help them increase their stake in order to reach the 
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required staking quota to become a verifier node. By doing this, guarantors can earn guarantee 
income. Storage users are users on the network that pay in CRU to store files. 

Below is a summary of the network actors and token flows: 

• Verifier nodes: 
o Block packaging rewards (network token emissions, storage fees reward pool), 

enabled through sufficient token staking 
o Block cycle rewards (network token emissions) 
o Storage income (miner storage rewards) 

• Candidate nodes: 
o Block cycle rewards (network token emissions) 
o Storage income (network token emissions) 

• Guarantors: 
o Guarantee income (from verifier node block packaging rewards) 

• Users: 
o Storage fees spending (users’ storage fees spending split into miner storage rewards 

(20%) and staking reward pool (80%)) 

In summary, the MPoW algorithm ensures storage operations are validly and verifiably executed at a 
node level, and the GPoS algorithm is responsible for accepting and bundling storage work reports 
from nodes in the form of transactions and writing them to blocks. GPoS is hence the mechanism that 
brings together the various actors in the network. 

On top of the MPoW and GPoS consensus mechanisms lives the Decentralized Storage Market (DSM), 
which is an algorithm that lives is executed on the nodes and is responsible for storage pricing, 
processing storage orders and file retrieval operations.  

When a user wants to store a file on a node, the user is given a dynamically calculated storage price 
based on storage requirements and details of the data to be stored. The user then submits the storage 
request to the network with storage fees attached. The network accepts the files and transmits them 
to a node through IPFS, which saves the files locally using the TEE and MPoW algorithm. The storage 
proof is then generated (including proof of files stored and remaining storage capacity), verified by 
other nodes on the network and submitted to the GPoS algorithm. The GPoS algorithm locks the valid 
proofs to the blockchain and pays out relevant rewards to nodes that hold the files. 

To ensure nodes do not only store files and are unwilling to transmit files when requested by nodes or 
users, a nodes ability to receive storage orders is linked to their willingness to transmit files. Crust 
implements the IPFS BitSwap credit system between nodes, in which nodes track the number of 
storage requests that were fulfilled by other nodes to them. Over time, nodes will either build credits 
(data shared) or build debt (data received). Selfish nodes that build debt with other nodes will 
eventually not receive any further files until they have replenished their credit. This essentially 
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incentivizes nodes to always try to maintain a high credit, because only nodes with sufficient credit 
are awarded new storage orders. Also, before a retrieval request is actioned the node will check the 
Crust Network blockchain to see whether the file is indeed a valid file on the network. This ensures 
nodes’ bandwidth isn’t wasted. It should be noted here that only the four fastest merchants that can 
provide valid storage proofs are given storage rewards, further incentivizing fast node bandwidth. 

When a file is retrieved on IPFS the file fragments are retrieved from a number of nodes to speed up 
the download process and are reconstructed on the node which issued the retrieval request. If a user 
requests a file through a gateway, the gateway reconstructs the file before passing it on to the user 
using the HTTP protocol (as described in the IFPS section). 

Saving the real-time status of all files onto the Crust blockchain allows for the DSM to count all saved 
instances of files across the entire network, as well as retrieve their storage locations. As a result, the 
network is able to calculate the replication status of all files. Currently a mechanism to improve the 
replication status and hence the resilience of data on the network is being designed that will allow for 
dynamic replenishment of files on the network. 

Summarizing the above; MPoW ensures file storage operations are valid, GPoS ensures at a network 
level actors are rewarded for their various roles in the network, and DSM acts as user/application 
interface and the coordinating mechanism between GPoS and MPoW. 

Storage Process & Pricing Mechanism 

In Crust Network, a storage user connects directly with Crust Network’s Decentralized Storage Market 
(DSM), which dynamically calculates the network rate for storage based on file size, quantity and 
certain network metrics. On the DSM, the users directly settle storage fees based on their storage 
requirements and store files directly. The fees involved for storing on Crust include: 

• Byte fee: fee levied on storage size and quantity of files 
• On-chain state fee: fee for every storage order placed 
• Basic fee: fee charged for the duration of the contract in 6-month increments 

Formula:  

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 𝑐𝑐𝑆𝑆𝑐𝑐𝑆𝑆 = (𝑓𝑓𝑓𝑓𝑓𝑓𝑆𝑆 𝑐𝑐𝑓𝑓𝑠𝑠𝑆𝑆 ∗ 𝑏𝑏𝑏𝑏𝑆𝑆𝑆𝑆 𝑓𝑓𝑆𝑆𝑆𝑆) + (𝑏𝑏𝑆𝑆𝑐𝑐𝑓𝑓𝑐𝑐 𝑓𝑓𝑆𝑆𝑆𝑆 ∗ 𝑐𝑐𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 𝑑𝑑𝑑𝑑𝑆𝑆𝑆𝑆𝑆𝑆𝑓𝑓𝑆𝑆𝑑𝑑) + 𝑐𝑐𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 𝑓𝑓𝑆𝑆𝑆𝑆 

Whereas storage duration is calculated in 6-month increments. 

On Crust Network, the storage costs are based on network activity and denominated in CRU. If more 
files are stored, the price increases and if fewer files are stored the price decreases – similar to the 
relationship between Ethereum’s base fee price for gas units. That means if the price of the CRU token 
changes over time, the USD cost for storage will increase, while generally it can be expected that 
storage fees remain more stable. 

 



Fundamental Labs 

  54 

Tokenomics 

Initial pool of 20 million CRU, split as follows: 

• 5 million CRU for community development (25%) 
• 2 million CRU for ecological growth (10%) 
• 5 million CRU reserved for investors (25%) 
• 4 million CRU for the technical team (20%) 
• 4 million CRU foundation reservation (20%) 

New tokens are issued on an annual basis with an annually reducing inflation coefficient. All newly 
emitted tokens are mining rewards for active nodes. 

 
Figure 41: Crust Network token emissions. Source: Crust Economy Whitepaper 

(https://gw.crustapps.net/ipfs/QmRYJN6V5BzwnXp7A2Avcp5WXkgzyunQwqP3Es2Q789phF) 

 

Pinata 

Pinata is an IPFS pinning service and gateway provider. Through Pinatas API, users can directly store 
files on Pinata’s own IPFS nodes. Users can also create dedicated gateways for storage and file 
retrieval. While Pinata operates on a the public IPFS network, they centrally control user accounts and 
billing. Pinata can be considered a centralized service built on a decentralized network. 

Storage Technology 

Pinata participates in the public IPFS DHT, meaning that anybody with the CID can access the content. 
Users can store files using an API key provided by Pinata upon sign-up, or directly using their online 
file manager. 

 

https://gw.crustapps.net/ipfs/QmRYJN6V5BzwnXp7A2Avcp5WXkgzyunQwqP3Es2Q789phF


Fundamental Labs 

  55 

Pricing Mechanism 

Pinata utilizes a monthly pay-as-you-go model with three tiers of membership. The highest tier is a 
monthly flat-rate with bandwidth >100GB per month charged as you go. 

Non-IPFS-based storage solutions 

Apart from the three IPFS-based storage solutions mentioned above, many unique proprietary 
storage solutions have emerged over the years. In this section we will be taking a closer look at 
Arweave, Siacoin, Storj and Swarm. 

Arweave 

 
Figure 42: Relationship between Arweave and Permaweb. Source: https://www.arweave.org/technology#permaweb 

Arweave is an open-source decentralized storage protocol that allows users to store data 
permanently with a single upfront fee. Arweave consists of two distinct parts: the blockweave and the 
permaweb. 

• The blockweave is the blockchain-like storage layer of the Arweave network, where storage 
orders are processed and data is replicated.  

• The permaweb is a human-readable layer built on top of the blockweave that is meant to 
mimic the world wide web as we know it – with the difference, that all websites and dApps 
once uploaded cannot be changed or altered. The permaweb, just like the world wide web, is 
accessible with a normal web browser using HTTP. 

The Arweave protocol also supports smart contracts through its SmartWeave smart contract platform. 
Unlike smart contract-enabled blockchains such as Ethereum where smart contracts are computed on 

https://www.arweave.org/technology#permaweb
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every node on the network, the state of smart contracts on Arweave are computed only on the local 
machines that request to run a smart contract. 

Token 

AR is the native utility token of the Arweave network, and is used to pay into storage endowments, 
which are paid out to miners to ensure that costs for storage and network bandwidth are covered 
indefinitely. 

Storage Technology & Consensus Mechanism 

The blockweave uses a consensus mechanism called Succint Random Proofs of Access (SPoRA), often 
simply referred to as “Proof-of-Access” (PoA). Whenever a node wants to accept new data, the miner 
must not only produce information about the previous block but must also provide cryptographic 
proof that they can access the “recall block” or “recall chunk”, a randomly selected block of 
previously uploaded data, thus the name “Proof of Access”. New data can only be uploaded to the 
system (and thus a new block mined) once the recall block has been verified. As a result of PoA, the 
blockweave is strictly speaking not a blockchain, but instead resembles more of a graph structure, 
hence blockweave. 

 
Figure 43: Simplified illustration of PoA algorithm 

In Arweave, the block data structure ensures that all data required to process new blocks and new 
transactions included into each individual block. As a result, it is not necessary for new miners who 
join the network to download the entire history of all blocks. When a new miner joins, it requests a 
Block Hash List and a Wallet list from trusted peers, which allow old blocks to be requested and 
verified and for transactions to be verified, even without possessing the block in which the last wallet 
was verified. 
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This leads to another challenge: apart from being able to request blocks from other nodes, old miners 
must be willing to spend their network and computational resources to deliver that block to new 
miners. Arweave solves this with the “wildfire” mechanic. In this mechanic nodes rank their peers 
based on the peer’s generosity (sending new transactions) and the peer’s responsiveness (responding 
to requests for information). Nodes then gossip (i.e. communicate) preferentially to higher ranked 
peers. This incentivizes nodes to actively communicate with the network, as active communication is 
rewarded with a higher likelihood of being able to mine the next block. 

 
Figure 44: Simplified illustration of Wildfire mechanic creating the weave-like structure of the blockweave 

Unlike Filecoin, where the consensus mechanism incentivizes expansion of storage resources, the PoA 
consensus mechanism incentivizes long-term data storage and redundancy maximization through the 
storing of ‘rare’ blocks, as miners would compete with fewer other miners in the Proof-of-Work puzzle 
for the same level of block reward. 

The PoA consensus algorithm is essentially an extension of the PoW consensus algorithm, as when a 
node has the cryptographic proof required to mine recall block, they must still compete the smaller 
group of miners to solve a cryptographic puzzle. Once the cryptographic puzzle is solved and the data 
is added to the network, miners are rewarded with AR tokens. 

The Arweave protocol monitors and moderates content that is published to Arweave, to ensure that 
certain materials that node operators do not agree with can be filtered out. While there are some 
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automatic checks in place, every node can decide for itself which data to download and which to 
ignore. Hence when a user uploads files to the network, they can pick a gateway that adheres to a 
content policy that fits their needs. For more information about Arweave’s content policy, please 
consult the Arweave yellow paper.  

Data Permanence & Pricing Mechanism 

When users wish to store files on Arweave, they most pay a one-time upfront fee. Part of this fee is 
paid to a miner to add the data to the network, but a majority of the fee is contributed towards a 
storage endowment, which using Arweave’s assumptions should covers the cost of storing the data 
indefinitely. In their calculations, over the last 50 years the average annual rate of decline of the cost 
of storing 1GB per hour has been -30.57%. 

 
Figure 45: decline of storage costs for 1GBh. Source: Arweave Yellow Paper 

Arweave applies three key assumptions to enable data to be stored permanently (or more precisely, 
as long as the Arweave network exists): 

1. The cost a user pays to upload and store data to the Arweave network covers the first 200 
years of storage, assuming a -0.5% per year decline in storage costs, which appears very 
conservative against the -30.57% average annual decline of the past 50 years. If the decline in 
cost per GBh is greater than -0.5% per year, the total number of years that the data will be 
stored is increased accordingly.  

2. Tokens in the endowment are expected to grow in value in fiat terms over time, acting as an 
additional long-term stabilizing factor.  

3. The Arweave protocol actively avoids releasing tokens from the endowment: if miners have 
already surpassed profitability through tokens emitted from inflationary block rewards and 
the transaction fees received when new data is added to the blockchain, payouts from the 
endowment do not take effect. This would lead to a ‘float’ of tokens in the endowment, 
further extending the length of time that data is stored on the network. 
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Figure 46: visualization of assumptions driving data permanence Source: https://www.arweave.org/technology#permaweb 

This means that even if nodes leave the network over time, new nodes will join to continue storing the 
data for the economic incentives the system offers – as long as storage revenue is greater than the 
cost of storage. 

There are 3 components that determine the cost of storing data on Arweave: 

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑐𝑐𝑆𝑆(𝐷𝐷) = 𝑆𝑆𝑓𝑓𝑠𝑠𝑆𝑆(𝐷𝐷) ∗ 𝐹𝐹𝑓𝑓𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑐𝑐𝑆𝑆𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 ∗ 𝑃𝑃𝑆𝑆𝑓𝑓𝑐𝑐𝑆𝑆𝑈𝑈𝑃𝑃𝑈𝑈  

Where, 

• Size(D)    = Size of the data that is being stored 
• FiatCostPerpetualStorage  = Fiat cost of perpetually storing 1 GB of data today 
• PriceUSD   = Price of AR (Arweave's native token) in fiat terms 

Mining Rewards 

When a miner successfully solves the PoA hashing puzzle, assuming they have access to the recall 
block, mining rewards are split into three parts: 

• Transaction fees 
• Inflationary token emissions (pre-defined for every block, gradually decreasing at a rate 

dependent on the block height) 
• Endowment payments 

The mining reward per block is outside of the control of the miner. The equation for a miner to 
maximize their mining revenue consists of: 

https://www.arweave.org/technology#permaweb
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• The probability of being able to participate in the mining of a new block is a function of the 
probability that the miner holds the data requested to be validated in the recall block. To 
maximize this likelihood, nodes are incentivized to store as many blocks as possible. 

• The probability of a node being able to be the first to solve the cryptographic puzzle, which is 
a function of the nodes hashing power in comparison to the network’s average hashing 
power. 

• The historical active participation in the wildfire sub-mechanic, which increases how soon the 
node can get information on the next block. 

Tokenomics 

• 55 million AR generated at genesis (8th June, 2018) 
• 11 million AR as inflationary emissions introduced as block rewards, which are halved 

continuously until all tokens are in circulation 

Fully diluted token circulation will be 66 million AR tokens. Arweave does not deploy token burning 
mechanisms. 

 
Figure 47: AR token inflation and team allocation. Source: https://medium.com/amber-group/arweave-enabling-the-permaweb-

870ade28998b 

  

https://medium.com/amber-group/arweave-enabling-the-permaweb-870ade28998b
https://medium.com/amber-group/arweave-enabling-the-permaweb-870ade28998b


Fundamental Labs 

  61 

Sia 

Sia is a storage blockchain with the primary aim to bring back data ownership to the individual and 
prevent data censorship by any actors. Unlike IPFS-based filed storage and Arweave where entire files 
are replicated between nodes, Sia splits up files that are uploaded, encrypts the data fragments, and 
replicates those fragments across its network. 

In the Sia network, file storage users are referred to as “renters”, because they essentially rent storage 
space on the network. The “node” is your specific installation of Sia, and a “host” is a storage space 
provider on the Sia network that earns Siacoin for providing their storage. 

Sia, similar to Filecoin, works with contracts between renters and hosts that determine how much 
data is stored for how long and at which price. These storage contracts that define the terms of 
arrangement between renters and hosts are stored on Sia’s native blockchain, the Sia. The data to be 
saved (defined in the contract) is then stored on hosts’ machines. When a contract is formed, the host 
commits to submitting proofs that the files agreed upon in the contract are indeed stored on their 
machine. 

Sia uses both incentivization and slashing to ensure files are stored for the duration of a contract: 
regularly submitting file storage proofs is rewarded with Siacoins and missing to submit a proof is 
penalized. 

Architecturally speaking, Sia can be considered a hard fork of the Bitcoin network protocol, with 
adjustments made to transactions specifically to enable storage: the Bitcoin Script transaction 
language was entirely removed and replaced only with timelock-enabled M-of-N multi-signature 
transactions. The functionality of this transaction type is also extended in Sia with contracts, proofs, 
and contract updates. All this together enables the previously mentioned storage contract 
functionality in what is essentially a Proof-of-Work storage blockchain. 

Token 

The Sia Blockchain has two tokens: 

• Siacoin: the native utility token of the Sia blockchain used for storage contracts 
• Siafunds: a revenue-sharing token on the network that gives holders Siacoins for every 

completed contract on the network 

Storage Technology & Consensus Mechanism 

The primary driver behind Sia’s storage mechanism is the storage contract. The storage contract 
specifies all aspects of the agreement between the renter and the host. Furthermore, the storage 
contract includes a Merkle tree hash that is created by generating 30 constant sized segments from 
the file which are then hashed into a Merkle tree using the Threefish algorithm and each file segment 
is hashed using a different encryption key. This enables the verification of storage proofs and ensures 
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the files are not tampered with. Each piece is then replicated on several different hosts, enabling 
privacy and increased censorship-resistance: no single host can reconstruct the file with their piece 
alone, and taking down a single piece does not corrupt the file. In fact, Sia uses Reed-Solomon erasure 
coding to generate the 30-piece segments, which ensures redundancy: only 10 of the 30 segments are 
required to fully recover a file, meaning even if a majority of the segments are lost, the files can still be 
recovered. Furthermore, if a host does go offline, the file is automatically replicated to a new host. 

Apart from what files should be saved for how long at which price and the file’s Merkle tree hash, the 
storage contract also specifies: 

• Challenge frequency: specifies frequency of periodic valid proof submissions by host 
• Payout parameters: reward rules for valid proofs, invalid or missing proof, and the maximum 

number of proofs that can be missed 

When a challenge is to be submitted, there is a timeframe during which the host can submit the valid 
proof to the network called a challenge window. If a valid proof is submitted, the host is rewarded a 
certain amount of the funds pre-paid into the contract. This is Sia’s “Proof of Storage” algorithm. If a 
host does not submit the proof, those funds are instead sent to a “missed proof” address, which is 
essentially a burn address. If too many proofs are missed, the contract “unsuccessfully terminates” 
and the remaining coins in the storage contract are sent to the missed proof address. The contract 
also unsuccessfully terminates if the funds in the storage contract are exhausted before the end of the 
contract duration – more on this in the storage process & pricing mechanism section. 

If a storage contract is successfully concluded, meaning the contract was sufficiently funded and the 
host successfully submitted periodical proofs over the duration of the contract, then the contract is 
successfully terminated, and remaining coins sent to the host. 

No matter if a proof is validly submitted or missed, or the contract successfully or unsuccessfully 
concludes, every action or lack thereof creates an output ID similar to a UTXO in Bitcoin. And just like 
Bitcoin, every transaction input must be a prior transaction output, meaning Sia can be considered a 
UTXO-based blockchain. 

The storage proofs, which are to be submitted periodically by the host to the network, are created 
based on a randomly selected portion of the originally stored file and a list of hashes from the file’s 
Merkle tree. These are then validated against the Merkle tree hash previously submitted when the 
storage contract was locked to prove that the host is indeed storing the file, and no alterations were 
made to the file. 

Sia ensures hosts are incentivized to stay online and to complete contracts instead of intentionally 
dropping ongoing contracts for more lucrative contracts through putting up collateral up-front and 
through a host scoring mechanism. If a host goes offline or doesn’t keep persistently keep renter data, 
they lose their collateral, and their host score is impacted. The host score is comprised of: 
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• Host uptime: longer uptime scores higher (below 95% induces collateral slashing) 
• Competitive pricing: lower prices for storage and bandwidth score higher 
• Collateral: equilibrium scores higher (impacts storage pricing: low collateral means host has 

nothing to lose, high collateral leads to storage price increases for renters) 
• Available storage space: more remaining storage scores higher 
• Host age: older scores higher 
• Interaction weight: being open to storage orders scores higher 
• Version adjustment: newer version of the Sia client scores higher 

Furthermore, later in the lifecycle of the Sia project a Proof of Burn mechanic was introduced to 
prevent Sybil attacks. A Sybil attack is when an attacker creates a large number of identities in an 
identity system to become the majority in order to dictate what the system deems is true. In Sia this 
could mean creating a majority of new hosts to dictate which transactions should be included in a 
block. Hosts are expected to burn around 0.5-2.5% of their revenue to prove they are legitimate nodes 
on the network. This makes creating new identities extremely expensive and further instructs the 
aforementioned reputation system. 

Finally, Sia relies on a Proof of Work consensus algorithm (specifically the Blake2b algorithm) to mine 
new blocks on the blockchain. While Proof of Storage creates transactions that validate storage proofs 
and are broadcast to the network, the Proof of Work algorithm bundles these transactions into blocks 
and adds them to the blockchain. As a result, the hashed Merkle tree of each transaction becomes 
publicly visible on the blockchain, meaning any host that holds a file segment can validate it against 
the public ledger storage contract entry. 

Sia is also capable of allowing edits to uploaded files, however the precise mechanism thereof is 
beyond the scope of this research. 

Storage Process & Pricing Mechanism 

On the Sia network, an automatic storage marketplace is used to find a host to store data. The cost for 
storage, quoted and settled in Sia’s native Siacoin token, is determined by supply and demand by 
hosts and renters: “If hosts find they can lower prices and win more data to store as a result, they'll do 
it. If renters are willing to pay more to store on high-quality hosts, those hosts might raise their 
prices.” (https://docs.sia.tech/) 

On Sia, you do not specify the duration of which you want to store your files. Instead, storage 
contracts are always three months long, and are automatically extended when one month remains, 
assuming the contract isn’t cancelled by the renter (e.g., due to insufficient funds) or the files’ health 
drops below minimum redundancy (hosts stop hosting the file).  

The mechanism used to store files longer than three months is by setting an allowance that 
automatically refills over time from your wallet balance. This allowance is used to pay for storage 
contract extensions. Any funds that were filled into the allowance, but not allocated to storage 

https://docs.sia.tech/
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contracts through transactions, are returned to the renter. The allowance refill mechanism is separate 
to the contract renewal mechanism and starts about halfway into a contract period.  

 
Figure 48: Visualization of allowance and contract extensions mechanism timing 

However, users must regularly open the Sia application to ensure the allowance is replenished – this is 
not executed autonomously through smart contracts but is a process that the Sia software executes 
when it is manually launched on a renter’s machine. As a result of these mechanics, the renter only 
needs to set the target price and the expected total storage size to be used. The renter is then 
automatically connected to suitable hosts, which have all storage and bandwidth related costs set as 
part of their storage contract pricing setup. 

The formula for storage allowance calculation is: 

𝐴𝐴𝑓𝑓𝑓𝑓𝑆𝑆𝐴𝐴𝑆𝑆𝑑𝑑𝑐𝑐𝑆𝑆 = 𝑇𝑇𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑃𝑃𝑆𝑆𝑓𝑓𝑐𝑐𝑆𝑆𝑇𝑇𝑇𝑇/𝑚𝑚𝑃𝑃𝑚𝑚𝑃𝑃ℎ ∗ 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑓𝑓𝑠𝑠𝑆𝑆𝑇𝑇𝑇𝑇 ∗ 𝑆𝑆𝑆𝑆𝑑𝑑𝑆𝑆𝑆𝑆𝑆𝑆𝑐𝑐𝑆𝑆𝐷𝐷𝑑𝑑𝑆𝑆𝑆𝑆𝑆𝑆𝑓𝑓𝑆𝑆𝑑𝑑 

Whereas; 

• TargetPrice is the storage price per TB per month denoted in Siacoins 
• StorageSize refers to the expected total used storage size in TB 
• ContractDuration refers to the 3-month contract cycles in Sia 

 
Figure 49: Renter storage contract settings; Source: https://docs.sia.tech/renting/how-to-rent-storage-on-sia 

https://docs.sia.tech/renting/how-to-rent-storage-on-sia
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As users transmit, store, and retrieve data, they pay three different fees to the hosts from their 
allowance: 

• Contract formation fees: transaction fee for creating a storage contract on the blockchain 
• Storage fees: cost of renting storage space 
• Bandwidth fees: bandwidth used for uploading or downloading data and for repair-related 

bandwidth 

The replication of a split file across multiple hosts is called “health” and renters must regularly open 
the Sia client to refresh the health of their files. If a file’s health is 100% it means that all pieces of the 
file are available on the Sia network. This manual action is a result of Sia’s encryption approach: 
because nobody but the renter can construct the full file with each segment’s encryption key, only the 
renter can verify with the network whether the file’s replication status is healthy. 

Sia recommends opening the client at least once a month and have the client run over night to ensure 
housekeeping items such as allowance refill, storage contract extensions and file replication can run 
in the background. 

Skynet & Skylink 

Skynet (https://siasky.net/) is Sia’s implementation of a content delivery network, and closely 
resembles CIDs in IPFS or Arweave permaweb links: uploading data to Skynet generates a unique 
identifier, known as a Skylink. Just like with IPFS CIDs, a Skylink is a cryptographic hash generated 
from the file contents, and thus closely resemble CIDs in look: 

https://siasky.net/CADIvje1Fdy2FP2TeBsYAbHfUsNug98wE7SYArdyczDaDg 

Skynet uses “Portals” to let users access files through Skylinks. These closely resemble gateways in 
IPFS in that they provide an access point to the data on the Sia network without having to download 
the Sia client. Similar to IPNS, Skynet also has their own decentralized domain name service called 
Handshake Names, which all Portals support. 

In the previous section we mention that on the Sia network a client must open their client at least 
once a month to ensure that housekeeping operations are completed. On Skynet, these housekeeping 
actions are automatically completed by Portals, and they also pay all host-related fees a renter would 
cover if they were to directly rent space on Sia. Finally, on Skynet Portals can decide their own pinning 
policies, which determine how long a file will be available on the network. 

Since the network and underlying data is secured through the Sia blockchain, and pricing mechanics 
of storing on the Sia blockchain controlled through the automatic storage marketplace, Skynet adds 
another financial layer on top. According to Skynet docs, Portals operate a freemium model where 
basic access to the network and saving small files is subsidized by Portals, however, to unlock faster 
network speeds more storage space, users must pay a premium. Unfortunately, we were not able to 
test this feature as sign-ups for Skynet were closed as of time of writing. 

https://siasky.net/
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Figure 50: Skynet registrations disabled. 

Tokenomics 

There is no maximum supply of Siacoins and the supply of Siacoins is perpetually inflating at a rate of 
30,000 Siacoins per block. Initially the blocks emitted were (300,000 – blockheight) blocks, however 
after 270,000 blocks the block reward is locked at a minimum issuance of 30,000 per block. As of time 
of writing, the Sia blockchain has reached over 366,000 blocks with a total circulation of 47.4 billion 
Siacoins. The Sia blockchain has no pre-minted blocks, meaning that when the chain was launched 
circulation of Sia was 0.  

 
Figure 51: Sia network block rewards vs block height over time. 
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Apart from the block reward schedule above, Sia introduced a hardfork in its 6th year of operation to 
include a block subsidy and minted additional Siacoins, to fund the Sia Foundation, a non-profit 
entity meant to support, develop and promote the Sia network. The block subsidy is 30,000 SC per 
block paid out every 4,380 blocks (roughly a month at an average block time of 10 minutes) which 
equates to an annual subsidy of around 1.57 billion SC (roughly $8 million USD at token value at time 
of writing). The initial Sia Foundation subsidy was also approximately 1.57 billion SC, but was created 
all at once instead of being created overtime with block rewards. 

https://docs.sia.tech/get-started-with-sia/siacoin-total-supply 

 
Figure 52: Annual growth of Siacoin supply and Foundation coin minting. Source: https://siastats.info/macroeconomics 

The amount of coins burned in Sia, even after the Proof of Burn mechanism was activated (which 
appears to have been activated in early 2020 given the sudden increases in burn; no official sources 
were found on the activation date), is far below the coin inflation at only roughly 500k SC burned per 
year vs roughly 3.14 billion SC minted annually (1.57 billion block rewards and 1.57 billion Sia 
Foundation subsidy). 

 
Figure 53: Siacoin burn mid-2015 to early 2022. Source: https://siastats.info/macroeconomics 

https://docs.sia.tech/get-started-with-sia/siacoin-total-supply
https://siastats.info/macroeconomics
https://siastats.info/macroeconomics
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Sia has a second cryptocurrency which are called Siafunds (SF). In total 10,000 SF were created and 
were entirely pre-mined. Siafunds allow for holders to share 3.9% of the revenue from successful 
storage contracts and were created for the purpose to ensure long-term funding for the development 
of the project. According to the Sia wiki, Nebulous holds 8576 SF, with the remainder being in public 
circulation as a result of a crowdfunding campaign to fund early development of the project. 
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Storj V3 

Stroj is a decentralized file storage and content delivery network that aims to replace Amazon Web 
Services (AWS) S3. The Storj protocol implements a peer-to-peer storage system that encrypts, shards 
and distributes data to nodes around the world, bearing some similarities to Sia, all while avoiding the 
use of a blockchain. This design decision is meant to foster greater scalability: in a system where 
actions are meant to have only milliseconds of latency, the time overhead of waiting for a blockchain 
to reach consensus makes a blockchain an unsuitable mechanism for a decentralized storage 
provider with the ambition to replace AWS both in scale and performance. 

Storj is currently on its third major iteration, hence “V3”. 

Token 

The Storj network is uses the Storj token on the Ethereum network as the default payment 
mechanism for storage and bandwidth payments. While the Storj token is the default, the network is 
designed in a way to allow for other payment mechanisms to be adopted in the future. 

Storage Technology & Storage Mechanism 

The Storj network differentiates actors in the network based on three peer classes: 

• Storage nodes (object storage servers): provide storage space and bandwidth, expected to 
remain online at all times 

• Uplink (clients): application or service that wants to store or retrieve data, not expected to 
remain online 

• Satellite (metadata servers): caches node address information, stores per-object metadata, 
maintains storage node reputation, manages billing and payments, verifies file integrity, and 
reconstructs files, and manages authorization 

 
Figure 54: The three peer classes. Source: Storj V3 Whitepaper 

These three peer classes form a symbiotic relationship in that they all rely on each other for this 
system to work in a trustless manner. Unlike other systems where consensus must be achieved to 
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mine a block to a blockchain that runs validations, the peer classes operate independently and can 
form clusters within which file storage and transfer operations are executed in what is essentially a 
decentralized reputation-based file storage system. 

The main actions executed by actors on the Storj network include: 

• Node identity creation 
• Data storage 
• Data transfer (inbound & outbound) 
• Audits (validation of integrity of stored data) 
• Data repair (reconstructing files with poor integrity) 
• Authorization management 
• Reputation database management 
• Payment and billing 

At a high level, storage users pay satellites to coordinate storage with storage nodes. To connect with 
a satellite, users use a customer application or uplink, that facilitates communication with a satellite. 
Once nodes have been selected by the satellite, the uplink connects directly to the storage node to 
store files. The files are split into equally sized segments using the  

In this protocol satellites are the coordinators of the system and manage various administrative 
overheads, including maintaining an up-to-date database of where file segments have been stored, 
launching audits and coordination data repair efforts. Satellites are also the billing and payment 
centers of Storj, as they track how much data has been retrieved from storage nodes, how much data 
storage nodes have saved at any given moment in time, and which repair efforts a storage node was 
involved in. Satellites then pay storage nodes on a regular basis using the Storj ERC20 token that lives 
on the Ethereum blockchain. The Storj token is in this sense purely a utility token meant to pay for 
storage transactions in the network. 

Storage nodes rent their hard drive space and provide bandwidth to allow for uplinks to send data to 
store or retrieve stored data from storage nodes, the connections of which are coordinated by 
satellites. When an uplink receives data to upload, it splits the data using Reed-Solomon erasure 
codes, similarly to Sia, which creates 80 constant-size file segments each encrypted using a different 
encryption key. The satellite tells the uplink which storage nodes to connect to and signs that 
message. Finally, the uplink then connects to storage nodes providing the signed message from the 
satellite (called a bandwidth allocation) to transfer the individual file segments to the storage node.  

When a file is transmitted, it is not transmitted at once, instead the segment and bandwidth allocation 
is broken down into smaller pieces, which are transmitted and validated one by one. Bandwidth 
allocations are stored by storage nodes to claim bandwidth payments from satellites. Splitting up a 
transmission like this ensures that a storage node cannot go offline to avoid receiving and storing a 
full file, and still claim payment for the full bandwidth allocation. 
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Figure 55: Diagram of a put operation. Source: Storj V3 Whitepaper 

It’s important to note that initial inbound transmissions of data for storage are not paid for on the 
Storj network. Instead, storage nodes are paid for all other uses of their bandwidth (e.g., data 
retrieval, repair work) and for the storage space used. 

In this system there is no single source of truth, such as a blockchain, which stores and manages all 
storage orders and token transactions. Instead, every satellite and storage node maintain databases 
that hold metadata about network participants they’ve interacted with. While satellites also hold 
metadata on file locations (i.e., server addresses), both satellites and storage nodes hold data relating 
to the performance of their counterparts. These databases form Storj’s audit, data repair and 
reputation systems. 

Audits are executed regularly by satellites and ensure data availability on storage nodes. A satellite 
sends a challenge to a storage node requesting proof that the node has indeed stored the data it is 
expected to have stored. Audits first choose a “stripe” – a subset of a segment – and then run an 
algorithm across all erasure shares stored across storage nodes to identify faulty data. When sufficient 
storage nodes return correct information (which they are incentivized to do), any incorrect or missing 
responses can be identified. Audit results feed into Storj’s reputation system – more on that later. 
Storage nodes that fail these audits are eventually removed from a satellite’s storage node database 
and can lose funds held in escrow. Furthermore, these storage nodes may also receive limited to no 
future payments, further incentivizing to adhere to the system. 

When a node goes offline, taking with it pieces all the segments stored on it’s node. If the segments 
fall below a certain safety threshold (set by uplinks as desired durability), the satellite marks the 
pieces as missing and starts the data repair process. Since the satellite holds the data locations in a 
local database, it can reverse-lookup other storage locations of these segments. These are 
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downloaded by the satellite, reconstructed, and the missing pieces will be regenerated and uploaded 
to new nodes. To assess whether the repair was successful, a validation hash is stored in the satellite’s 
database, and compared against a piece hash retrieved from the storage node after storage is 
complete. 

Storj’s storage node reputation system consists of four parts:  

• Proof of Work (PoW) identity system: to enter the network and communicate with satellites, 
storage nodes must prove they are invested by solving a PoW puzzle. The difficulty of the 
puzzle is set arbitrarily by satellites and the system is expected to self-balance over time. 

• Vetting process: unvetted storage nodes are slowly added as additional storage targets for 
storage requests. They are selected as additional nodes on top of a satellites existing 
preferred storage nodes so as not to affect network integrity, but also to allow for data 
collection about the node. 

• Filtering system: nodes that fail audits, fail to return data, are too slow or do not have enough 
uptime are disqualified by the satellite for future storage operations. Once disqualified, a 
storage node must restart the vetting process to re-enter the network. 

• Preference system: based on storage node latency, history of reliability and uptime, 
geographic location and other collected data, they are given a greater selection likelihood for 
new data uploads. 

The preference system only determines where new data is stored, and does not affect already stored 
data or repair data. 

Since Storj is a trustless system, storage nodes have a reputation system of their own to determine 
trustworthy satellites. Storage nodes collect data on payment, demand generation and performance 
history. If satellites score poorly, storage nodes will avoid accepting their data. Furthermore, when 
new satellites join the system, storage nodes will start a vetting process of their own, restricting 
interactions with new satellites and collecting data to gauge their trustworthiness. 

The role of satellites is extremely important in this system, and requires satellites to be constantly 
running – as should these go offline, repair processes would stop and eventually all stored copies of 
the file segments will disappear. It should be noted here that a satellite instance does not necessarily 
constitute one physical machine. Instead, a satellite can run as several servers, and can be backed by 
a horizontally scalable trusted database to ensure greater uptime. Furthermore, uplinks can connect 
to multiple satellites to increase data availability and permanence. Nonetheless, if a satellite goes 
offline, all data coordinated across storage nodes by that satellite will be inaccessible: the data will 
remain online on storage nodes, however will become inaccessible as the retrieval mechanism of the 
satellite would be unavailable. 

As can be seen from the above, Storj implements various techniques to ensure data availability, 
tamper-protection and privacy. Storj also allows the editing of data – part of their mission to become 
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an AWS S3 competitor – through the use of authorizations. Users will communicate with a satellite to 
request adding, removing and editing of files, and if these users have the right authorizations, they 
will be authenticated which will allow them make changes to their uploaded data according to their 
authorization configurations. 

Pricing Mechanics & Data Permanence 

In Storj uplinks, satellites and storage nodes are three distinct actors with distinct functions, all facing 
different target groups. Uplinks are end-user facing and build a user-friendly way for people with data 
storage requirements to store data, without interacting with the backend architecture, namely the 
satellites and storage nodes. Users – through uplinks – end up paying satellites to coordinate 
communication with storage nodes, the latter of which are often operated by anybody who has 
additional bandwidth and storage capacity to spare. 

In this structure, satellites act as a sort of escrow that collect user payments and hold these, while 
storage nodes deliver on the storage and retrieval requirements and are paid in regular cycles by 
satellites based on files stored and bandwidth used in STORJ tokens, and uplinks handle user 
payments to satellites in multiple currency formats (STORJ, fiat money or other means). 

Public storage node payments appear to be set centrally by Storj, and are as follows: 

• Storage - STORJ tokens at $1.50 per TB per month (including the increased data size resulting 
from erasure encoding). If 2TB of storage is used in a month, storage revenue would be $3 
worth of STORJ tokens. 

• Egress bandwidth - $20 per TB for egress bandwidth related to file retrieval  
• Audit & repair bandwidth - $10 per TB for egress bandwidth related to file audit and repair 

bandwidth 

Through the Storj website, users can get a free plan to start testing Storj decentralized cloud services 
with 150gb storage limit and 150gb bandwidth per month, or get a pro account for which storage 
costs $4 per TB per month and bandwidth $7 per TB (an additional per-segment fee of $0.0000088 
applies as well). 

Since users pay only for what they use, there is a clear difference in what users pay and what storage 
nodes earn. This has two reasons: first, Storj incentivized higher bandwidth with higher revenue, and 
second, Storj withholds a certain amount of revenue, which storage operators lose if they leave the 
network. Since this is a public network and users regularly join and leave the network, the revenue 
from collected witholdings is used to further fund storage node bandwidth: 

• Months 1-3: 75% of revenue is withheld, 25% is paid to the Node Operator 
• Months 4-6: 50% of revenue is withheld, 50% is paid to the Node Operator 
• Months 7-9: 25% of revenue is withheld, 75% is paid to the Node Operator 
• Months 10-15: 100% of Storage Node revenue is paid to the Node Operator 
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• After Month 15: 50% of total withholdings are returned, with the remaining 50% held until the 
Node gracefully exits the network 

It is important to note here that as time passes, previous withholdings are not returned to the storage 
node, but instead the withholding amount for new revenues is reduced. If a storage node stays 
operational for 15 months, then half of historical withholdings are returned, and the other half 
becomes claimable if they do a graceful exit. A graceful exit refers to storage nodes permanently 
leaving the network, for which the node triggers a special command with the satellite that 
coordinates the moving of all data stores on the node to other storage nodes. 

Storj assumes that all data is meant to be stored permanently, unless the file is given a specific time-
to-live (TTL) value during upload, which is essentially an expiration date. If no TTL value is set, the files 
will stay online for as long as the user pays the satellite through the uplink and the uplink remains 
online. 

Tokenomics 

The STORJ token is the utility token used for paying for storage and bandwidth on the Storj 
decentralized storage network. Previously Storj operated using a Bitcoin-based token with the ticker 
SJCX, however throughout 2017 Storj began allowing users to convert their Bitcoin-based tokens to 
their Ethereum ERC20 equivalent, the STORJ token. The total supply of STORJ ERC20 tokens is fixed 
and pre-minted at 425 million STORJ. 

Of the 425 million STORJ in circulation, as of March 2022, 203.5m are in public circulation and 221.5m 
are in custody of Storj Labs, see items 18 and 19 in below figure. 

 
Figure 56: STORJ Token Balances & Flows Report: Q1 ‘22. Source: https://www.storj.io/blog/storj-token-balances-and-flows-report-q1-2022 

https://www.storj.io/blog/storj-token-balances-and-flows-report-q1-2022
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The tokens that are in Storj Labs custody are broken into eight different tranches, each containing 
30.625 million STORJ that are unlocked every quarter for eight consecutive quarters. At time of writing 
(May 25th, 2025) this represents roughly $16.8 million USD. Each tranche is in a time-locked smart 
contract, so even if Storj Labs would want to redeem these tokens, they would have to need 8 
consecutive quarters to withdraw the full amount. 

In December 2018 when these tranches were introduced, Storj Labs committed to relocking the first 
tranche and appending it to the unlocking of the last tranche to essentially delay any unlockings 
without affecting the one tranche per quarter arrangement. Whenever a tranche is not used, the 
tranche get relocked as Storj Labs attempts to finance its operations through operating the public 
Storj network and keeps these tranches as financial reserves. 

 
Figure 57: Tranche relocking schedule. Source: https://www.storj.io/blog/using-timelocked-tokens-to-support-long-term-sustainability 

Storj committed to giving 60-days notice if there are to be any changes to the tranche unlocking 
schedule. Of the 8 tranches, currently two tranches have not been relocked. The first discontinuation 
of a relock was at the end of Q3 2020, and the second occured in the end of Q1 2022. The stated 
purpose for unlocking these tokens was to support the networks continuing growth, thus increasing 
tokens in circulation to 234.1 million STORJ and reducing tokens in Storj Labs custody to 190.8 million 
STORJ. 

https://www.storj.io/blog/using-timelocked-tokens-to-support-long-term-sustainability
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Figure 58: Storj Labs custody Ethereum addresses as of April 28th. Source: https://www.storj.io/blog/storj-token-balances-and-flows-report-

q1-2022 

If we ignore changes in circulating tokens and only consider the fixed supply, it can be assumed that in 
the long-term the value of the STORJ token will increase as both supply and demand side actors in 
Storj network need to use the Storj token for storage activities. 

 

  

https://www.storj.io/blog/storj-token-balances-and-flows-report-q1-2022
https://www.storj.io/blog/storj-token-balances-and-flows-report-q1-2022
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Swarm 

Swarm is a decentralized storage network built on the Ethereum network and incentivized through 
the BZZ token, an Ethereum-based ERC20 token. Swarm’s vision is to “extent the blockchain with 
peer-to-peer storage and communication to realize the world computer that can serve as an 
operating system and deployment environment for decentralized applications”. 

Swarm also aims to provide freedom of information through permissionless publishing and privacy 
through features such as anonymous browsing, deniable storage, untraceable messaging, and file 
representation formats that leak no metadata. 

Anybody with additional hard drive space and bandwidth can join the Swam. 

The network has been in development as early as 2015, and as of February 2022 the network could 
reliably upload and download roughly 5mb of data at speeds of 6.47MiB/s up and 12.47MiB/s down. 
Finally, data on Ethereum swarm is accessible through human readable formats and can be resolved 
through ENS domains. 

Token 

The utility token of the Swarm network is the BZZ token, which is an ERC20 token that lives on the 
Ethereum blockchain. The token supply is dynamic and changes with purchases/sales of the token 
from and to the bonding curve, which determines the price of the token. More details in the 
tokenomics section. 

Storage Technology & Consensus Mechanism 

Swarm consists of four interconnected yet clearly separable layers that together form the 
infrastructure of Swarm, of which the overlay network and an API to access that network form the 
core of the Swarm protocol. 

 
Figure 59: Swarm’s layered design. Source: The Book of Swarm 

The overlay network determines how files are stored and represents the protocols underlying storage 
model. The storage model developed by Swarm is called Distributed Immutable Store of Chunks 
(DISC) and forms the basis of how to nodes communicate with each other. Swarm is essentially a 
slightly different interpretation of a distributed hash table (DHT), similar to how IPFS nodes manage 
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and keep track of the various nodes they have connected to, but instead of storing where files are to 
be found DISC directly stores tiny pieces of files (i.e., chunks) – more on that later. 

In Swarm, nodes are expected to make decisions in regards to which other nodes to connect to based 
on their proximity so that local connection decisions can reach globally optimal routing of messages 
(known as Kademlia connectivity). Every node tracks both the network address and Swarm address of 
other nodes, the latter of which tracks enables to define the proximity of two addresses to each other. 

Using the degree of proximity, nodes that are closest to each other form a fully connected 
neighborhood requiring a minimum of 8 nodes, and also connect to 8 further nodes each in an 
increasingly lesser different degree of proximity to the neighborhood (i.e., they are farther away from 
each other). 

 
Figure 60: Kademlia connectivity used in Swarm. Source: Swarm Whitepaper 

This network design ensures that messages intended for nodes that are very far away from each other 
can always reach their destination, even if the nodes are not directly connected.  

Swarm stores data on these nodes as chunks, which represent 4 kilobytes of data with an address that 
exists in the same address space as node addresses, enabling the calculation of proximity of nodes 
and chunks. Swarm requires nodes that are in close proximity of a data chunk to store that same 
chunk locally, thus creating clusters of replicated data within a neighborhood. Since a chunk is 
essentially just a segment of a larger file, without the context of what the full file is meant to be, nodes 
are unable to rebuild the full file. Chunks can be encrypted for additional privacy. Furthermore, to 
ensure file redundancy and consistent availability when nodes leave or join the network, nodes 
continuously synchronize chunks with their neighbors. 

To retrieve a chunk from a neighborhood, a client communicates with a node which is in close 
proximity to itself requesting the retrieval of the chunk. Using the chunk address and the Kademlia 
algorithm, the nodes recursively forward the message through various nodes in varying proximity 
layers until they reach the neighborhood hosting the file, which then returns the file along the same 



Fundamental Labs 

  79 

route. If any node along the way happens to have the chunk in their local storage, it is sent back as a 
response instead. Nodes are incentivized to cache chunks of data to reduce bandwidth usage of the 
network. This is achieved through opportunistic caching, which refers to the caching chunks of distant 
neighborhoods to receive payment for retrieval of those chunks. Cached data lives in the caching 
subsystem of a Swarm node. 

In Swarm, each node has two local subsystems, namely the reserve and the cache. In simple terms, 
the reserve stores chunks that have postage stamps attached to it. Postage stamps are purchased 
through BZZ tokens and indicate the value a user places on storing these files on Swarm. When a file is 
stored on a node, the postage stamp acts as a sort of rent that decreases over time. Once the value of 
the stamp reaches a certain threshold, it is moved from the reserve (i.e., paid for storage) to the cache.  

The cache stores chunks that are not protected by the reserve, either because the storage stamp value 
has reduced over time, or because the cached chunk is from a distant node. Chunks in cache are 
ranked by their latest retrieval as a means to indicate the popularity of the chunk and whether it is 
worth to continue storing the chunk. The cache is regularly cleared of unpopular chunks, ensuring 
that popular content is permeated across the network and easily retrievable, while also maximizing 
income for nodes: When nodes on the network return a chunk from a retrieval request, the nodes earn 
BZZ tokens, hence economically incentivizing the holding of as many chunks as possible. 

The method of retrieving and transferring files described above increases anonymity in the network, 
because a node forward request and an initial request initiation are identical in terms of structure. 
This ambiguity obfuscates the identity of those retrieving files. 

However, this approach leads to unpopular chunks of data to disappear from nodes overtime, thus 
impacting permanence of the system. To combat this, Swarm implements a postage lottery system 
called “RACE” (raffle, apply, claim and earn), that is executed through smart contracts on the 
Ethereum blockchain. While the detailed mechanism of race goes beyond the scope of this research, it 
suffices to know that these raffles: 

• act as spot checks on nodes 
• for nodes presents an opportunity to earn additional income 
• encourage nodes to stay online as they would otherwise miss raffles 
• require nodes to store the right data and properly maintain the stored chunks 

Finally, in order to reconstruct files, nodes need to be able to understand which chunks belong to 
which files, and the downloader needs to be able to verify the correctness of the chunks. In Swarm, 
every chunk address is unique, implying a unique address-payload association. This uniqueness 
creates the immutability of the chunk, as only that chunk can contain the data embedded in it. The 
canonical content addressed chunk in Swarm is called a binary Merkle tree chunk (BMT chunk), and 
the address of BMT chunks is calculated using the binary tree hash algorithm (BMT hash). 
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Swarm has two kinds of chunks; a content addressed chunk and a single owner chunk. While these 
differ in terms of data structure, both use the BMT hash verify chunk integrity and to reconstruct the 
full file. Ultimately, users can use their Swarm hash (also known as bzzhash) to signal to the network 
to retrieve all chunks and recreate the file. For more details on the BMT hashing algorithm, please 
refer to The Book of Swarm. 

For additional protection against data loss, caused by nodes going offline or being otherwise unable 
to access data, Swarm applies Cauchy-Reed-Solomon erasure coding to 4 kilobyte sized chunks of the 
file before they are hashed into the Merkle tree. This allows the network to retrieve data, even when a 
portion of the chunks are inaccessible. 

Finally, Swarm includes a pinning function which allows nodes to save all chunks locally and prevent 
the chunks from being removed. 

Data Permanence & Pricing Mechanics 

Swarm applies the Swarm Account Protocol (SWAP) to incentivize nodes to collaborate with each 
other in routing messages, while decreasing frivolous bandwidth use. Nodes track the relative 
bandwidth consumption with peers they connect with, creating a debts and credits balancing 
mechanism between any two nodes at any given point in time. When node A requests data from node 
B, and node B responds, then node B has a credit surplus, while node A has debt liabilities. This can 
continue until a certain threshold is reached, after which node B will not accept further requests until 
node A has repaid liabilities. To pay back liabilities and have both nodes return to a balanced state of 
fewer debts and liabilities within the threshold, node A can either wait for reciprocal requests from 
node B which would reduce node A’s debts, or they send a cheque that can be cashed out for BZZ 
tokens to node B pay back the debt. This creates a “service-for-service” relationship between nodes. 

 
Figure 61: Swarm Accounting Protocol. Source: Swarm whitepaper. 
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Cheques are handled on-chain by a smart contract. Nodes must decide for themselves whether to 
cash a cheque upon receipt, or to wait to reduce transaction costs on the Ethereum network. If the 
node waits, however, they increase the risk of settlement failure, i.e., the check can bounce due to the 
cheque provider moving funds outside of their chequebook wallet. This is where Swarm employs a 
reputation system: because the smart contract records failed cheque withdrawals, nodes can see 
publicly which other nodes did not make good on their cheques and can refrain from communicating 
with that node in the future.  

Apart from the SWAP protocol, nodes can also earn additional BZZ by holding unpopular data and 
participating in the RACE lottery system. 

The SWAP and RACE systems are positive incentive mechanisms. Swarm also employs negative 
incentive systems called “competitive insurance”. Competitive insurance requires nodes to store 
every bit of promised, and failure to do so is not only unprofitable, but outright catastrophic to the 
insurer. While SWAP incentivizes short term data storage, and RACE incentivized long-term data 
storage of popular files, competitive insurance incentivizes long-term data storage of any files stored 
on the network no matter their popularity, as well as simultaneously prevent users from spinning up 
new nodes to sell empty long-term storage promises, only to cash-out and deactivate their node 
shortly after. 

The competitive insurance system works with a deposit system. Nodes that want to sell long-term 
storage (aka promissory storage) must have a stake verified and locked-in with an Ethereum-based 
smart contract at the time of making their promise – essentially a security deposit. If the security 
deposit has been locked, the node is entitled to make storage promises up to the duration of the 
locked stakes. If, during the promise period, a node fails to prove ownership of the data they promised 
to store, they lose their entire security deposit. If a user or a node finds that content with a promise is 
inaccessible, they can submit a challenge to a smart contract that handles the verification process. 

Nodes are compensated for their promises over time. When a user stores data on a node, they pay up-
front for the entire storage duration. This amount is locked, and is released in installments to the node 
as long as they can provide proof of custody of the files. 

Swarm let’s end users, through client software, determine the amount of data and duration that data 
is to be stored on the network. The price for storage is automatically calculated through the client 
software and smart contracts. Swarm allows for different levels of data retention: 

• minimal – a few hours 
• temporary – a week 
• long term – a year 
• forever – 10 years 

The purchase of storage space over time in Swarm is called a postage subscriptions, and they are 
managed by the postage subscription API, which shows users how much data of a specific 
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subscription has been uploaded and for how long it can be stored at its current price (e.g. 88/100 
megabytes for 23 days). 

To access one’s content on Swarm, one either needs to run a Swarm node, or use a public gateway. 
This setup is similar to that of IPFS. Swarm recommends to only retrieve encrypted content through 
one’s own node, as the if using a public gateway, as soon as the content leaves the gateway and is 
transmitted over http to the user it will not be encrypted anymore. 

Tokenomics 

While the project has been with the Ethereum Foundation since 2015 within their Geth team, only in 
June 2021 Swarm launched a public token sale. Details of the token distribution can be found below: 

• 27.6 million BZZ (42%) – Early Token Sale (Early backers in Sept 2020, Private round in Dec 
2020) 

• 5.17 million BZZ (8%) – Public Token Sale (June 2021, unlocked in August 2021) 
• 15.87 million BZZ (23%) – Ecosystem (Infrastructure for L1 solutions, development, airdrops, 

grants, donations) 
• 12.50 million BZZ (19%) – Present and Future Team Members 
• 4.9 million BZZ (7%) – Swarm Foundation (protocol, network and business development, 

marketing and community support) 

The price of the BZZ token is determined by a bonding curve that is controlled by smart contracts 
instead of traditional market makers, where purchases and sales of tokens to the bonding curve will 
directly adjust the price that users pay for new tokens. This makes it prohibitively expensive to buy or 
dump large amounts of tokens at once, thus protecting the utility of the token against speculative 
actions. 

 
Figure 62: Swarm bonding curve explanation on Bzzaar exchange (bzz.echange). Source: https://medium.com/ethereum-swarm/swarm-

and-its-bzzaar-bonding-curve-ac2fa9889914 

https://medium.com/ethereum-swarm/swarm-and-its-bzzaar-bonding-curve-ac2fa9889914
https://medium.com/ethereum-swarm/swarm-and-its-bzzaar-bonding-curve-ac2fa9889914
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As a result of this bonding curve, the actual circulating supply of tokens is in constant fluctuation. 
Although there is a hardcoded maximum of 125 million BZZ tokens, it’s extremely unlikely the higher 
end of token supply will ever circulate, due to the shape of the bonding curve which steepens heavily. 

 
Figure 63: Shape of BZZ bonding curve. Source: https://medium.com/ethereum-swarm/swarm-and-its-bzzaar-bonding-curve-ac2fa9889914 

The bonding curve smart contract address can be found here: 
https://etherscan.io/address/0x4f32ab778e85c4ad0cead54f8f82f5ee74d46904 

Although the bonding curve is fully automated, the Swarm Foundation maintains control to manually 
shut down the bonding curve in emergency situations, which include: 

• A critical or exploitable bug in the bonding curve contract is discovered 
• MakerDAO discovers a critical bug or is shut down for any reason; and 
• DAI loses its peg to the USD 

As of writing, there are roughly 63.5 million BZZ tokens in circulation, which is -2.7 million BZZ tokens 
below the 66.2 million tokens that were minted and distributed during token launch. Indicating that 
tokens have likely been sold back to the bonding curve since launch. 

Real-time circulating supply: https://tokenservice.ethswarm.org/circulating_supply 

Real-time bonding curve: https://tokenservice.ethswarm.org/token_price 

 

  

https://medium.com/ethereum-swarm/swarm-and-its-bzzaar-bonding-curve-ac2fa9889914
https://etherscan.io/address/0x4f32ab778e85c4ad0cead54f8f82f5ee74d46904
https://tokenservice.ethswarm.org/circulating_supply
https://tokenservice.ethswarm.org/token_price
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