
Beanstalk - BIP24
Smart Contract Security Audit

Prepared by: Halborn

Date of Engagement: August 22nd, 2022 - September 9th, 2022

Visit: Halborn.com

https://halborn.com


DOCUMENT REVISION HISTORY 3

CONTACTS 3

1 EXECUTIVE OVERVIEW 4

1.1 INTRODUCTION 5

1.2 AUDIT SUMMARY 5

1.3 TEST APPROACH & METHODOLOGY 5

RISK METHODOLOGY 6

1.4 SCOPE 8

2 ASSESSMENT SUMMARY & FINDINGS OVERVIEW 12

3 FINDINGS & TECH DETAILS 13

3.1 (HAL-01) UNDERLYING TOKENS CAN BE DRAINED THROUGH THE UN-

RIPEFACET.CHOP FUNCTION - CRITICAL 15

Description 15

Proof of Concept 17

Risk Level 17

Recommendation 17

Remediation Plan 18

3.2 (HAL-02) ROOTS CAN BE DRAINED THROUGH THE SILO-

FACET.TRANSFERDEPOSITS FUNCTION - MEDIUM 19

Description 19

Proof of Concept 22

Risk Level 23

Recommendation 23

Remediation Plan 23

3.3 (HAL-03) OVERFLOW IN INCREASEDEPOSITALLOWANCE FUNCTION - LOW

24

1



Description 24

Risk Level 24

Recommendation 25

Remediation Plan 25

3.4 (HAL-04) SILOFACET.CLAIMPLENTY FUNCTION ALLOWS ANYONE TO CLAIM

ON YOUR BEHALF - INFORMATIONAL 26

Description 26

Risk Level 26

Recommendation 26

Remediation Plan 27

3.5 (HAL-05) APPROVETOKEN FUNCTION ACTS AS A SAFEINCREASEALLOWANCE

CALL - INFORMATIONAL 28

Description 28

Risk Level 28

Recommendation 29

Remediation Plan 29

2



DOCUMENT REVISION HISTORY

VERSION MODIFICATION DATE AUTHOR

0.1 Document Creation 08/22/2022 Roberto Reigada

0.2 Document Updates 09/08/2022 Roberto Reigada

0.3 Draft Review 09/08/2022 Gabi Urrutia

1.0 Remediation Plan 09/15/2022 Roberto Reigada

1.1 Remediation Plan Review 09/16/2022 Gabi Urrutia

CONTACTS

CONTACT COMPANY EMAIL

Rob Behnke Halborn Rob.Behnke@halborn.com

Steven Walbroehl Halborn Steven.Walbroehl@halborn.com

Gabi Urrutia Halborn Gabi.Urrutia@halborn.com

Roberto Reigada Halborn Roberto.Reigada@halborn.com

3

mailto:Rob.Behnke@halborn.com
mailto:Steven.Walbroehl@halborn.com
mailto:Gabi.Urrutia@halborn.com
mailto:Roberto.Reigada@halborn.com


4

EXECUTIVE OVERVIEW



1.1 INTRODUCTION

Beanstalk engaged Halborn to conduct a security audit on their smart

contracts beginning on August 22nd, 2022 and ending on September 9th,

2022. The security assessment was scoped to the smart contracts provided

in the GitHub repository BeanstalkFarms/Beanstalk/tree/bip-24.

1.2 AUDIT SUMMARY

The team at Halborn was provided 2 weeks for the engagement and assigned a

full-time security engineer to audit the security of the smart contract.

The security engineer is a blockchain and smart-contract security expert

with advanced penetration testing, smart-contract hacking, and deep

knowledge of multiple blockchain protocols.

The purpose of this audit is to:

• Ensure that smart contract functions operate as intended

• Identify potential security issues with the smart contracts

In summary, Halborn identified some security risks that were successfully

addressed by the Beanstalk team.

1.3 TEST APPROACH & METHODOLOGY

Halborn performed a combination of manual and automated security testing

to balance efficiency, timeliness, practicality, and accuracy in regard

to the scope of this audit. While manual testing is recommended to

uncover flaws in logic, process, and implementation; automated testing

techniques help enhance coverage of the code and can quickly identify

items that do not follow the security best practices. The following

phases and associated tools were used during the audit:

5

EX
EC

UT
IV

E
OV

ER
VI

EW

https://github.com/BeanstalkFarms/Beanstalk/tree/bip-24


• Research into architecture and purpose

• Smart contract manual code review and walkthrough

• Graphing out functionality and contract logic/connectivity/functions

(solgraph)

• Manual assessment of use and safety for the critical Solidity

variables and functions in scope to identify any arithmetic related

vulnerability classes

• Manual testing by custom scripts

• Scanning of solidity files for vulnerabilities, security hot-spots

or bugs. (MythX)

• Static Analysis of security for scoped contract, and imported

functions. (Slither)

• Testnet deployment (Brownie, Remix IDE)

RISK METHODOLOGY:

Vulnerabilities or issues observed by Halborn are ranked based on the

risk assessment methodology by measuring the LIKELIHOOD of a security

incident and the IMPACT should an incident occur. This framework

works for communicating the characteristics and impacts of technology

vulnerabilities. The quantitative model ensures repeatable and accurate

measurement while enabling users to see the underlying vulnerability

characteristics that were used to generate the Risk scores. For every

vulnerability, a risk level will be calculated on a scale of 5 to 1 with

5 being the highest likelihood or impact.

RISK SCALE - LIKELIHOOD

5 - Almost certain an incident will occur.

4 - High probability of an incident occurring.

3 - Potential of a security incident in the long term.

2 - Low probability of an incident occurring.

1 - Very unlikely issue will cause an incident.

RISK SCALE - IMPACT

5 - May cause devastating and unrecoverable impact or loss.

4 - May cause a significant level of impact or loss.

6

EX
EC

UT
IV

E
OV

ER
VI

EW



3 - May cause a partial impact or loss to many.

2 - May cause temporary impact or loss.

1 - May cause minimal or un-noticeable impact.

The risk level is then calculated using a sum of these two values, creating

a value of 10 to 1 with 10 being the highest level of security risk.

CRITICAL HIGH MEDIUM LOW INFORMATIONAL

10 - CRITICAL

9 - 8 - HIGH

7 - 6 - MEDIUM

5 - 4 - LOW

3 - 1 - VERY LOW AND INFORMATIONAL

7

EX
EC

UT
IV

E
OV

ER
VI

EW



1.4 SCOPE

IN-SCOPE:

The security assessment was scoped to the code changes performed in these

smart contracts since our last audit Commit ID:

• MarketplaceFacet.sol

• SeasonFacet.sol

• SiloFacet.sol

• WhitelistFacet.sol

• UnripeFacet.sol

• TokenFacet.sol

• PauseFacet.sol

• OwnershipFacet.sol

• FieldFacet.sol

• FertilizerFacet.sol

• FarmFacet.sol

• DiamondLoupeFacet.sol

• DiamondCutFacet.sol

• CurveFacet.sol

• ConvertFacet.sol

• BDVFacet.sol

• FundraiserFacet.sol

• AppStorage.sol

• Diamond.sol

• BeanstalkPrice.sol

• CurvePrice.sol

• P.sol

Initial commit ID:

- f3dcb644604b117735dc3917bc3c9d5e8749f476

These were all the code changes done between 1447fa2c0d42c73345a38edb4f4dad076392f429

and f3dcb644604b117735dc3917bc3c9d5e8749f476:

8

EX
EC

UT
IV

E
OV

ER
VI

EW

https://github.com/BeanstalkFarms/Beanstalk/tree/1447fa2c0d42c73345a38edb4f4dad076392f429/protocol
https://github.com/BeanstalkFarms/Beanstalk/tree/bip-24
https://github.com/BeanstalkFarms/Beanstalk/tree/1447fa2c0d42c73345a38edb4f4dad076392f429/protocol
https://github.com/BeanstalkFarms/Beanstalk/tree/bip-24


Listing.sol, MarketplaceFacet.sol, Order.sol

- Minor change in _cancelPodListing() function. This function now accepts

an address to cancel the listing of that address.

Oracle.sol

- A new event was added:

event MetapoolOracle(uint32 indexed season, int256 deltaB, uint256[2]

balances);

SeasonFacet.sol

- Minor change related to Sunrise event. It is now emitted in the

stepSeason() function instead of sunrise() although as stepSeason() is

called within the sunrise() function, there is no difference.

Sun.sol

- Minor changes to 2 events: event Rewards & event Soil.

Silo.sol

- Renamed _earn() function to _plant() function.

- Renamed earn event to plant event.

- Minor change in the _earn() function.

SiloFacet.sol

- A new Silo deposit approval system was implemented.

TokenSilo.sol

- New event DepositApproval was added.

- The functions _spendDepositAllowance(), _approveDeposit() and

depositAllowance() were added.

ConvertFacet.sol

- Added a return value to the convert() function.

CurveFacet.sol

- Added Curve3Pool checks.

FertilizerFacet.sol

- Added some view functions: getCurrentHumidity() and getFertilizers().

9

EX
EC

UT
IV

E
OV

ER
VI

EW



FieldFacet.sol

- Minor change in the _sow() function.

OwnershipFacet.sol

- Added a 2-step process for the ownership transfer.

UnripeFacet.sol

- Renamed Ripen to Chop.

- Renamed ClaimUnripe to Pick.

- Added 2 view functions: picked() and getUnderlyingToken().

- Major changes in the pick() function. fromMode was also added as a

parameter to this function.

Internalizer.sol

- Minor changes in the setURI() function.

LibConvert.sol

- Lambda if case added.

LibConvertData.sol

- Added LAMBDA_LAMBDA case to the ConvertKind enum.

- Added lambdaConvert() pure function.

LibCurveConvert.sol

- Minor change in lpToPeg() function.

LibLambdaConvert.sol

- Library implemented from scratch.

LibMetaCurveConvert.sol

- Added lpToPeg(), calcLPTokenAmount() and toPegWithFee() functions.

LibBeanMetaCurve.sol

- Added getXP0() function.

LibCurve.sol

- Added getYD() function.

10

EX
EC

UT
IV

E
OV

ER
VI

EW



LibCurveOracle.sol

- Added a new event: MetapoolOracle.

- Updated mintPrecision from 240 to 100.

LibSilo.sol

- Minor change in decrementBalanceOfStalk() function.

LibTokenSilo.sol

- Minor change in beanDenominatedValue() function.

LibWhitelist.sol

- 2 constants were removed: BEAN_LUSD_STALK and BEAN_LUSD_SEEDS.

LibApprove.sol

- Updated the approveToken() function.

LibTransfer.sol

- Added a new function: burnToken().

LibFertilizer.sol

- Minor changes to getHumidity(), addUnderlying() and remainingRecapitalization

() functions.

BeanstalkPrice.sol, CurvePrice.sol, P.sol

- Implemented from scratch.

Final commit ID:

- 6699e071626a17283facc67242536037989ecd91

11

EX
EC

UT
IV

E
OV

ER
VI

EW

https://github.com/BeanstalkFarms/Beanstalk/tree/6699e071626a17283facc67242536037989ecd91


2. ASSESSMENT SUMMARY & FINDINGS
OVERVIEW

CRITICAL HIGH MEDIUM LOW INFORMATIONAL

1 0 1 1 2

IM
PA
CT

LIKELIHOOD

(HAL-02) (HAL-01)

(HAL-03)

(HAL-04)
(HAL-05)

12

EX
EC

UT
IV

E
OV

ER
VI

EW



SECURITY ANALYSIS RISK LEVEL REMEDIATION DATE

HAL01 - UNDERLYING TOKENS CAN BE
DRAINED THROUGH THE

UNRIPEFACET.CHOP FUNCTION
Critical SOLVED - 09/16/2022

HAL02 - ROOTS CAN BE DRAINED
THROUGH THE

SILOFACET.TRANSFERDEPOSITS FUNCTION
Medium SOLVED - 09/16/2022

HAL03 - OVERFLOW IN
INCREASEDEPOSITALLOWANCE FUNCTION

Low SOLVED - 09/16/2022

HAL04 - SILOFACET.CLAIMPLENTY
FUNCTION ALLOWS ANYONE TO CLAIM ON

YOUR BEHALF
Informational SOLVED - 09/16/2022

HAL05 - APPROVETOKEN FUNCTION ACTS
AS A SAFEINCREASEALLOWANCE CALL

Informational SOLVED - 09/16/2022

13

EX
EC

UT
IV

E
OV

ER
VI

EW



14

FINDINGS & TECH
DETAILS



3.1 (HAL-01) UNDERLYING TOKENS CAN
BE DRAINED THROUGH THE
UNRIPEFACET.CHOP FUNCTION -
CRITICAL

Description:

In the UnripeFacet, the chop() function is used to burn unripeTokens in

order to receive in exchange an underlyingToken like, for example, Beans:

Listing 1: UnripeFacet.sol (Line 61)

51 function chop(

52 address unripeToken ,

53 uint256 amount ,

54 LibTransfer.From fromMode ,

55 LibTransfer.To toMode

56 ) external payable nonReentrant returns (uint256 underlyingAmount)

ë {

57 underlyingAmount = getPenalizedUnderlying(unripeToken , amount)

ë ;

58

59 LibUnripe.decrementUnderlying(unripeToken , underlyingAmount);

60

61 LibTransfer.burnToken(IBean(unripeToken), amount , msg.sender ,

ë fromMode);

62

63 address underlyingToken = s.u[unripeToken ]. underlyingToken;

64

65 IERC20(underlyingToken).sendToken(underlyingAmount , msg.sender

ë , toMode);

66

67 emit Chop(msg.sender , unripeToken , amount , underlyingAmount);

68 }

The burn of the unripeTokens is done through the LibTransfer.burnToken()

call:

15

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

https://etherscan.io/token/0xbea0000029ad1c77d3d5d23ba2d8893db9d1efab


Listing 2: LibTransfer.sol (Lines 87,95)

82 function burnToken(

83 IBean token ,

84 uint256 amount ,

85 address sender ,

86 From mode

87 ) internal returns (uint256 burnt) {

88 // burnToken only can be called with Unripe Bean , Unripe Bean

ë :3Crv or Bean token , which are all Beanstalk tokens.

89 // Beanstalk 's ERC -20 implementation uses OpenZeppelin 's

ë ERC20Burnable

90 // which reverts if burnFrom function call cannot burn full

ë amount.

91 if (mode == From.EXTERNAL) {

92 token.burnFrom(sender , amount);

93 burnt = amount;

94 } else {

95 burnt = LibTransfer.receiveToken(token , amount , sender ,

ë mode);

96 token.burn(burnt);

97 }

98 }

As we can see, the LibTransfer.burnToken() function returns the actual

amount of tokens that were burnt.

The LibTransfer.From fromMode has 4 different modes:

• EXTERNAL

• INTERNAL

• EXTERNAL_INTERNAL

• INTERNAL_TOLERANT

With the INTERNAL_TOLERANT fromMode tokens will be collected from the

user’s Internal Balance and the transaction will not fail if there is not

enough tokens there.

This INTERNAL_TOLERANT fromMode can be used in the UnripeFacet.chop()

call. As the chop() function is not checking the return value of the

16

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S



LibTransfer.burnToken() the contract will always assume that the full

amount is being burnt when that will not always be true. If a user

actually has 0 unripeTokens and uses the INTERNAL_TOLERANT fromMode, no

tokens will be burned at all but the full amount of underlyingTokens will

be sent to the user.

Proof of Concept:

This test was done forking the Ethereum mainnet on block 15465331

(Sep-03-2022 12:16:18 PM +UTC):

Risk Level:

Likelihood - 5

Impact - 5

Recommendation:

It is recommended to save the return value of the LibTransfer.burnToken()

call and overwrite the amount variable with that return as shown below:

Listing 3: UnripeFacet.sol (Line 57)

51 function chop(

52 address unripeToken ,

53 uint256 amount ,

54 LibTransfer.From fromMode ,

55 LibTransfer.To toMode

56 ) external payable nonReentrant returns (uint256 underlyingAmount)

ë {

17

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S



57 amount = LibTransfer.burnToken(IBean(unripeToken), amount , msg

ë .sender , fromMode);

58

59 underlyingAmount = getPenalizedUnderlying(unripeToken , amount)

ë ;

60

61 LibUnripe.decrementUnderlying(unripeToken , underlyingAmount);

62

63 address underlyingToken = s.u[unripeToken ]. underlyingToken;

64

65 IERC20(underlyingToken).sendToken(underlyingAmount , msg.sender

ë , toMode);

66

67 emit Chop(msg.sender , unripeToken , amount , underlyingAmount);

68 }

Remediation Plan:

SOLVED: The Beanstalk team fixed the issue by now taking also considering

the return value of the LibTransfer.burnToken().

18

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S



3.2 (HAL-02) ROOTS CAN BE DRAINED
THROUGH THE
SILOFACET.TRANSFERDEPOSITS
FUNCTION - MEDIUM

Description:

In the SiloFacet, the transferDeposits() function is used to transfer

multiple deposits to a new wallet:

Listing 4: SiloFacet.sol (Lines 108-110)

100 function transferDeposits(

101 address sender ,

102 address recipient ,

103 address token ,

104 uint32 [] calldata seasons ,

105 uint256 [] calldata amounts

106 ) external payable nonReentrant {

107 if (sender != msg.sender) {

108 for (uint256 i = 0; i < amounts.length; i++) {

109 _spendDepositAllowance(sender , msg.sender , token ,

ë amounts[i]);

110 }

111 }

112 _update(sender);

113 // Need to update the recipient 's Silo as well.

114 _update(recipient);

115 _transferDeposits(sender , recipient , token , seasons , amounts);

116 }

Although if the seasons and amounts array are both empty or if the

amounts array contains zeros the _spendDepositAllowance() function would

be skipped and the _transferDeposits() line would be executed:

19

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S



Listing 5: TokenSilo.sol (Lines 359-364)

319 function _transferDeposits(

320 address sender ,

321 address recipient ,

322 address token ,

323 uint32 [] calldata seasons ,

324 uint256 [] calldata amounts

325 ) internal {

326 require(

327 seasons.length == amounts.length ,

328 "Silo: Crates , amounts are diff lengths."

329 );

330 AssetsRemoved memory ar;

331 for (uint256 i; i < seasons.length; ++i) {

332 uint256 crateBdv = LibTokenSilo.removeDeposit(

333 sender ,

334 token ,

335 seasons[i],

336 amounts[i]

337 );

338 LibTokenSilo.addDeposit(

339 recipient ,

340 token ,

341 seasons[i],

342 amounts[i],

343 crateBdv

344 );

345 ar.bdvRemoved = ar.bdvRemoved.add(crateBdv);

346 ar.tokensRemoved = ar.tokensRemoved.add(amounts[i]);

347 ar.stalkRemoved = ar.stalkRemoved.add(

348 LibSilo.stalkReward(

349 crateBdv.mul(s.ss[token ]. seeds),

350 _season () - seasons[i]

351 )

352 );

353 }

354 ar.seedsRemoved = ar.bdvRemoved.mul(s.ss[token ]. seeds);

355 ar.stalkRemoved = ar.stalkRemoved.add(

356 ar.bdvRemoved.mul(s.ss[token ]. stalk)

357 );

358 emit RemoveDeposits(sender , token , seasons , amounts , ar.

ë tokensRemoved);

359 LibSilo.transferSiloAssets(

360 sender ,

20

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S



361 recipient ,

362 ar.seedsRemoved ,

363 ar.stalkRemoved

364 );

365 }

This function would call the LibSilo.transferSiloAssets() function:

Listing 6: LibSilo.sol (Line 58)

52 function transferSiloAssets(

53 address sender ,

54 address recipient ,

55 uint256 seeds ,

56 uint256 stalk

57 ) internal {

58 transferStalk(sender , recipient , stalk);

59 transferSeeds(sender , recipient , seeds);

60 }

The transferStalk() function would be executed with the parameter stalk

= 0:

Listing 7: LibSilo.sol (Line 129)

121 function transferStalk(

122 address sender ,

123 address recipient ,

124 uint256 stalk

125 ) private {

126 AppStorage storage s = LibAppStorage.diamondStorage ();

127 uint256 roots = stalk == s.a[sender ].s.stalk

128 ? s.a[sender ]. roots

129 : s.s.roots.sub (1).mul(stalk).div(s.s.stalk).add (1);

130

131 s.a[sender ].s.stalk = s.a[sender ].s.stalk.sub(stalk);

132 s.a[sender ]. roots = s.a[sender ]. roots.sub(roots);

133

134 s.a[recipient ].s.stalk = s.a[recipient ].s.stalk.add(stalk)

ë ;

135 s.a[recipient ]. roots = s.a[recipient ]. roots.add(roots);

21

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S



136 }

With stalk parameter being 0, roots would be equal to 1. This means that

after every call, 1 stalk would be decreased from the sender and added

to the recipient.

Technically, any user would be able to drain the roots of any other user,

although, the gas costs are much too high for this attack to be worth as

the attacker would only be able to steal 1 root per call.

Proof of Concept:

22

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S



Risk Level:

Likelihood - 1

Impact - 5

Recommendation:

It is recommended to revert any transferDeposits() call that contains an

empty array or a 0 in the amounts array.

Remediation Plan:

SOLVED: The Beanstalk team fixed the issue by adding a require check that

enforces arrays to be non-empty.

23

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S



3.3 (HAL-03) OVERFLOW IN
INCREASEDEPOSITALLOWANCE FUNCTION -
LOW

Description:

In the SiloFacet, the increaseDepositAllowance() function can overflow:

Listing 8: SiloFacet.sol (Line 61)

51 function increaseDepositAllowance(address spender , address token ,

ë uint256 addedValue) public virtual nonReentrant returns (bool) {

52 _approveDeposit(msg.sender , spender , token , depositAllowance(

ë msg.sender , spender , token) + addedValue);

53 return true;

54 }

Let’s imagine that the current allowance is already set to for example

1000 tokens and then the same user calls increaseDepositAllowance() and

tries to set the maximum uint256 value as the new allowance value:

As we can see, an overflow occurs and the value set as allowance is not

the value wanted by the user.

Risk Level:

Likelihood - 1

Impact - 3

24

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S



Recommendation:

It is recommended to use SafeMath in the increaseDepositAllowance()

function:

Listing 9: SiloFacet.sol (Line 61)

51 function increaseDepositAllowance(address spender , address token ,

ë uint256 addedValue) public virtual nonReentrant returns (bool) {

52 _approveDeposit(msg.sender , spender , token , depositAllowance(

ë msg.sender , spender , token).add(addedValue));

53 return true;

54 }

Remediation Plan:

SOLVED: The Beanstalk team solved the issue.

25

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S



3.4 (HAL-04) SILOFACET.CLAIMPLENTY
FUNCTION ALLOWS ANYONE TO CLAIM ON
YOUR BEHALF - INFORMATIONAL

Description:

In the SiloFacet, the claimPlenty() function allows anyone to claim on

behalf of other user:

Listing 10: SiloFacet.sol (Line 157)

156 function claimPlenty(address account) external payable {

157 _claimPlenty(account);

158 }

Listing 11: Silo.sol (Line 89)

86 function _claimPlenty(address account) internal {

87 // Each Plenty is earned in the form of 3Crv.

88 uint256 plenty = s.a[account ].sop.plenty;

89 C.threeCrv ().safeTransfer(account , plenty);

90 delete s.a[account ].sop.plenty;

91

92 emit ClaimPlenty(account , plenty);

93 }

Risk Level:

Likelihood - 1

Impact - 1

Recommendation:

It is recommended to only allow users to claim for their Plenty. On the

other hand, even if the threeCrv() token does not have any hook that

opens up for a reentrancy vulnerability, it is recommended to move the

26

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

https://etherscan.io/address/0x6c3F90f043a72FA612cbac8115EE7e52BDe6E490#code


deletion of the mapping before the actual safeTransfer() call as shown

below:

Listing 12: Silo.sol (Line 89)

86 function _claimPlenty(address account) internal {

87 delete s.a[account ].sop.plenty;

88 // Each Plenty is earned in the form of 3Crv.

89 uint256 plenty = s.a[account ].sop.plenty;

90 C.threeCrv ().safeTransfer(account , plenty);

91

92 emit ClaimPlenty(account , plenty);

93 }

Remediation Plan:

SOLVED: The Beanstalk team solved the issue.

27

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S



3.5 (HAL-05) APPROVETOKEN FUNCTION
ACTS AS A SAFEINCREASEALLOWANCE
CALL - INFORMATIONAL

Description:

In the LibApprove, the approveToken() function instead of setting the

allowance to a specific amount, it increases the current allowance by

that amount:

Listing 13: LibApprove.sol (Line 25)

18 function approveToken(

19 IERC20 token ,

20 address spender ,

21 uint256 amount

22 ) internal {

23 if (token.allowance(address(this), spender) == type(uint256).

ë max)

24 return;

25 token.safeIncreaseAllowance(spender , amount);

26 }

The approveToken() function is called in the functions:

- CurveFacet.exchange()

- CurveFacet.exchangeUnderlying()

- CurveFacet.addLiquidity()

These means that if the allowance is not fully used (hence reset to zero),

future approveToken() calls will set the allowance to a value higher than

expected.

Risk Level:

Likelihood - 1

Impact - 1

28

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S



Recommendation:

It is recommended to consider updating the approveToken() function to use

a safeApprove() call instead of safeIncreaseAllowance() as shown below:

Listing 14: LibApprove.sol (Line 25)

18 function approveToken(

19 IERC20 token ,

20 address spender ,

21 uint256 amount

22 ) internal {

23 if (token.allowance(address(this), spender) == type(uint256).

ë max)

24 return;

25 token.safeApprove(spender , 0);

26 token.safeApprove(spender , amount);

27 }

Other option is calculating the current allowance and do instead a token

.safeIncreaseAllowance(spender, amount - currentAllowance);.

Remediation Plan:

SOLVED: The Beanstalk team solved the issue.

29

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S



THANK YOU FOR CHOOSING


	DOCUMENT REVISION HISTORY
	CONTACTS
	EXECUTIVE OVERVIEW
	INTRODUCTION
	AUDIT SUMMARY
	TEST APPROACH & METHODOLOGY
	RISK METHODOLOGY

	SCOPE

	ASSESSMENT SUMMARY & FINDINGS OVERVIEW
	FINDINGS & TECH DETAILS
	
	Description
	Proof of Concept
	Risk Level
	Recommendation
	Remediation Plan

	
	Description
	Proof of Concept
	Risk Level
	Recommendation
	Remediation Plan

	
	Description
	Risk Level
	Recommendation
	Remediation Plan

	
	Description
	Risk Level
	Recommendation
	Remediation Plan

	
	Description
	Risk Level
	Recommendation
	Remediation Plan



