Information on the Platypus Finance exploit for the Aave Community
Overview

The Platypus Finance exploit (the exploit) occurred on February 16, 2023 during the time period
of 07:16:54 PM +UTC to 07:51:08 PM +UTC at the blockchain network Avalanche C-Chain (the
blockchain). The attacker, who is unknown in identity, exploited and transferred away $9.194
million of stablecoins in USD value to multiple wallet addresses from Platypus Finance, a
decentralized stablecoin exchange platform (the platform). Through taking advantage of a
vulnerability in the underlying smart contract code of the platform, the attacker deployed three
flash loan capable smart contracts, and executed a series of three transactions calling each of
the deployed contracts to execute the exploit. In one of the three transactions, the attacker
implemented a logic in the exploit contract such that around $381k worth of stablecoins
exploited from the platform’s LP pools were directly transferred to Aave’s Pool contract deployed
on Avalanche during the transaction.

The vulnerability exists in a function that was neither accessible from the platform’s front-end
interface, nor it was officially documented. The attacker exploits the vulnerability, draining the LP
pools where the stablecoins were deposited by the platform’s users, without the platform or the
platform’s users’ authorization.

In this report, we will focus on detailing the transaction that led to funds being maliciously
drained to Aave’s Pool contract from the platform, hence “the exploit” will subsequently be
referring exclusively to the transaction where funds were drained to Aave’s Pool contract, and

not the other transactions initiated by the attacker. We will also explain the vulnerability in the
platform, and how it was taken advantage of by the attacker.

Important details relevant to the exploit
1. Time of the exploit: Feb-16-2023 07:38:51 PM +UTC
2. Block number where the exploit happened: 26344274

3. The main blockchain address of the attacker that executed the exploit of the platform:

Address Chain Explorer

0xeff003d64046a6f521ba31f394 | Avalanche C-Chain https://snowtrace.io/address/Oxef

05cb720e953958 f 404626f521ba31f394
720953958

https://snowtrace.io/address/0xeff003d64046a6f521ba31f39405cb720e953958
https://snowtrace.io/address/0xeff003d64046a6f521ba31f39405cb720e953958
https://snowtrace.io/address/0xeff003d64046a6f521ba31f39405cb720e953958

4. The addresses of the smart contract containing the exploit logic, and were subsequently
called by the attacker to execute the exploit:

Address Explorer

0xf5d6007abb615654a95d33614a059fa59bcff390 | htips://snowtrace.io/address/0xf5d6007abb615654
a95d33614a059fa59bcff390

5. The transaction hashes directly related to the exploit:

Transaction hash Description Explorer

0x8b47bec698b338205e3b | Deployment of the exploit logic | https:/snowtrace.io/tx/0x8b47bec698b3

520d91f236af9d1692bda76 | (Creating a smart contract) 38205e3b520d91{236af9d1692bda7651
5104a20ef063ed5bf0aa2 04a20ef063ed5bf0aa2

0x919266aa66d7c9a6af02 | Execution of the exploit logic https://snowtrace.io/tx/0x919266aa66d7
deadbeffc1cc68ab7b87890 | (Calling the smart contract, the | c9a6af02dead5effc1cc68ab7b87890b52
b52e5fc1e20a7041aa84d second exploit) ebfc1e20a7041aa84d

6. Blockchain addresses involved in the exploit:

Address Description Explorer Note

0xf5d6007abb61565 | Smart contract https://snowtrace.io/address | Deployed by the attacker,

4295d33614a059fa5 | containing the xf 7 15654 responsible for the exploit logic

9bcff390 exploit logic 33614a059fa59bcff390

0xefF003D64046A6f | EOA address used https://snowtrace.io/address | Responsible for exploiting

521BA31f39405cb7 | to call the smart [0xeff003d64046a6f521ba3 | Platypus Finance and sent the

20E953958 contracts to initiate 1f39405¢cb720e953958 exploited funds to Aave’s Pool
the exploit contract

0x66357dCaCe8043 | Platypus Finance’s https://snowtrace.io/address | Responsible for fulfilling
1aee0A7507e2E361 | Pool router contract | /0x66357dCaCe80431aeel | stablecoin swapping requests.
B7e2402370 A7507e2E361B7e2402370

0xff6934aac9c94e1c | Platypus Finance’s https://snowtrace.io/address | The “emergencyWithdraw()”
39358d4fdcf7r0aeca | MasterPlatypusV4 [0xff6934aac9c94e1¢39358 | logic here was wrongly
77d0ab0 LP staking contract | d4fdcf70aeca77d0ab0 implemented and subsequently
exploited by the attacker.

0x061da45081ACE6 | Platypus Finance’s | https://snowtrace.io/address | Responsible for main logic of
ce1622b9787b68aa | PlatypusTreasure [0x061da45081ACE6Bce162 | the USP stablecoin system

7033621438 USP stablecoin 2b9787b682a7033621438

module
Oxaef735b1e7ecfaf8 | Platypus Finance’s https://snowtrace.io/address | LP contract where USDC
209ea46610585817 | LP-USDC pool [Oxaef735b1e7ecfaf8209ea | deposited by users here were
dc0a2e16 contract 46610585817dc0a2e16 swapped out using maliciously

minted USP

0x909b0ce4fac1ald | Platypus Finance’s https://snowtrace.io/address | LP contract where USDC.e
ca78f8ca7430bbafe | LP-USDC.e pool X 4faci 78f deposited by users here were
ecal12871 contract ca7430bbafeeca12871 swapped out using maliciously

minted USP

https://snowtrace.io/address/0xf5d6007abb615654a95d33614a059fa59bcff390
https://snowtrace.io/address/0xf5d6007abb615654a95d33614a059fa59bcff390
https://snowtrace.io/tx/0x8b47bec698b338205e3b520d91f236af9d1692bda765104a20ef063ed5bf0aa2
https://snowtrace.io/tx/0x8b47bec698b338205e3b520d91f236af9d1692bda765104a20ef063ed5bf0aa2
https://snowtrace.io/tx/0x8b47bec698b338205e3b520d91f236af9d1692bda765104a20ef063ed5bf0aa2
https://snowtrace.io/tx/0x919266aa66d7c9a6af02dead5effc1cc68ab7b87890b52e5fc1e20a7041aa84d
https://snowtrace.io/tx/0x919266aa66d7c9a6af02dead5effc1cc68ab7b87890b52e5fc1e20a7041aa84d
https://snowtrace.io/tx/0x919266aa66d7c9a6af02dead5effc1cc68ab7b87890b52e5fc1e20a7041aa84d
https://snowtrace.io/address/0xf5d6007abb615654a95d33614a059fa59bcff390
https://snowtrace.io/address/0xf5d6007abb615654a95d33614a059fa59bcff390
https://snowtrace.io/address/0xf5d6007abb615654a95d33614a059fa59bcff390
https://snowtrace.io/address/0xeff003d64046a6f521ba31f39405cb720e953958
https://snowtrace.io/address/0xeff003d64046a6f521ba31f39405cb720e953958
https://snowtrace.io/address/0xeff003d64046a6f521ba31f39405cb720e953958
https://snowtrace.io/address/0x66357dCaCe80431aee0A7507e2E361B7e2402370
https://snowtrace.io/address/0x66357dCaCe80431aee0A7507e2E361B7e2402370
https://snowtrace.io/address/0x66357dCaCe80431aee0A7507e2E361B7e2402370
https://snowtrace.io/address/0xff6934aac9c94e1c39358d4fdcf70aeca77d0ab0
https://snowtrace.io/address/0xff6934aac9c94e1c39358d4fdcf70aeca77d0ab0
https://snowtrace.io/address/0xff6934aac9c94e1c39358d4fdcf70aeca77d0ab0
https://snowtrace.io/address/0x061da45081ACE6ce1622b9787b68aa7033621438
https://snowtrace.io/address/0x061da45081ACE6ce1622b9787b68aa7033621438
https://snowtrace.io/address/0x061da45081ACE6ce1622b9787b68aa7033621438
https://snowtrace.io/address/0xaef735b1e7ecfaf8209ea46610585817dc0a2e16
https://snowtrace.io/address/0xaef735b1e7ecfaf8209ea46610585817dc0a2e16
https://snowtrace.io/address/0xaef735b1e7ecfaf8209ea46610585817dc0a2e16
https://snowtrace.io/address/0x909b0ce4fac1a0dca78f8ca7430bbafeeca12871
https://snowtrace.io/address/0x909b0ce4fac1a0dca78f8ca7430bbafeeca12871
https://snowtrace.io/address/0x909b0ce4fac1a0dca78f8ca7430bbafeeca12871

0x776628a5c37335

Platypus Finance’s

https://snowtrace.io/address

LP contract where USDT

608dd2a9538807b9 | LP-USDT pool X77662 7 2 | deposited by users here were
bba3869e14 contract 29538807b9bba3869¢14 swapped out using maliciously
minted USP
0x0d26d103c91f630 | Platypus Finance’s https://snowtrace.io/address | LP contract where USDT.e
52fbca88aaf01d530 | LP-USDT.e pool /0x0d26d103c91f63052fbca | deposited by users here were
4ae40015 contract 88aaf01d5304ae40015 swapped out using maliciously
minted USP
0Oxc1daa16e6979c2d | Platypus Finance’s https://snowtrace.io/address | LP contract where DAl.e
1229cb1fd0823491e | LP-DAl.e pool /Oxc1daa16e6979c2d1229¢c | deposited by users here were
a44555be contract b1fd0823491ea44555be swapped out using maliciously
minted USP
0xe23f8ccdeb4e8ce | Platypus Finance’s https://snowtrace.io/address | LP contract where BUSD
5d9fe76782718cd85 | LP-BUSD pool xe23f 4 fe7 | deposited by users here were
d12689c8 contract 6782718cd85d12689c8 swapped out using maliciously
minted USP
0xa16bbab03b6181 | Platypus Finance’s | https://snowtrace.io/address | LP contract where attacker
0ba8633343d9ffc04 | LP-USP pool [0xa16bbab03b61810ba863 | deposits maliciously minted USP
b086506b5 contract 3343d9ffc04b086506b5 to exchange for other stablecoin
assets
0x794a61358d6845 | Aave’s Pool V3 https://snowtrace.io/address | Destination where the exploited
594f94dc1db02a252 | contract /0x794261358d6845594f94 | funds were sent to

b5b4814ad

dc1db02a252b5b4814ad

https://snowtrace.io/address/0x776628a5c37335608dd2a9538807b9bba3869e14
https://snowtrace.io/address/0x776628a5c37335608dd2a9538807b9bba3869e14
https://snowtrace.io/address/0x776628a5c37335608dd2a9538807b9bba3869e14
https://snowtrace.io/address/0x0d26d103c91f63052fbca88aaf01d5304ae40015
https://snowtrace.io/address/0x0d26d103c91f63052fbca88aaf01d5304ae40015
https://snowtrace.io/address/0x0d26d103c91f63052fbca88aaf01d5304ae40015
https://snowtrace.io/address/0xc1daa16e6979c2d1229cb1fd0823491ea44555be
https://snowtrace.io/address/0xc1daa16e6979c2d1229cb1fd0823491ea44555be
https://snowtrace.io/address/0xc1daa16e6979c2d1229cb1fd0823491ea44555be
https://snowtrace.io/address/0xe23f8ccdeb4e8ce5d9fe76782718cd85d12689c8
https://snowtrace.io/address/0xe23f8ccdeb4e8ce5d9fe76782718cd85d12689c8
https://snowtrace.io/address/0xe23f8ccdeb4e8ce5d9fe76782718cd85d12689c8
https://snowtrace.io/address/0xa16bbab03b61810ba8633343d9ffc04b086506b5
https://snowtrace.io/address/0xa16bbab03b61810ba8633343d9ffc04b086506b5
https://snowtrace.io/address/0xa16bbab03b61810ba8633343d9ffc04b086506b5
https://snowtrace.io/address/0x794a61358d6845594f94dc1db02a252b5b4814ad
https://snowtrace.io/address/0x794a61358d6845594f94dc1db02a252b5b4814ad
https://snowtrace.io/address/0x794a61358d6845594f94dc1db02a252b5b4814ad

7. Amount of stablecoins stolen in the exploit: $380,594 approximately in USD value, of
which includes the following digital stablecoin assets (rounded off):

Name of the asset Ticker Contract address Quantity

TetherToken uUSDt 0x9702230A8Ea53601f5cD2dc00fDBc13d4dF4A8c7 96,810.192138

Tether USD (Bridged) USDT.e 0xc7198437980c041c805A1EDcbA50c1Ce5db95118 79,815.266923

USD Coin usDC 0xB97EF9Ef8734C71904D8002F8b6Bc66Dd9c48a6E 83,175.344156

USD Coin (Bridged) USDC.e 0xA7D7079b0FEaD91F3e65f86E8915Cb59c1a4C664 69,756.91961

Dai Stablecoin (Bridged) | DAl.e 0xd586E7F844cEa2F87f50152665BCbc2C279D8d70 26,540.19776038
658828526

Binance-Peg BUSD BUSD 0x9C9e5fD8bbc25984B178FdCE6117Defa39d2db39 24,496.77955261
821502284

USP Stablecoin UsP 0xdaCDe03d7Ab4D81fEDdc3a20fAA89aBAc9072CE2 19,047,391.05629
5368006201

Note:

- “Bridged” here means the asset was issued by the Avalanche Bridge, a
cross-blockchain asset transfer solution built by Avalanche.

- Exact amounts can be verified through the transfer logs available here:
https://snowtrace.io/tx/0x919266aa66d7c9ab6af02dead5effc1cc68ab7b878
90b52e5fc1e20a7041aa84d

8. Blockchain networks involved in the exploit: Avalanche C-Chain, EVM Chain ID 43114

https://snowtrace.io/tx/0x919266aa66d7c9a6af02dead5effc1cc68ab7b87890b52e5fc1e20a7041aa84d
https://snowtrace.io/tx/0x919266aa66d7c9a6af02dead5effc1cc68ab7b87890b52e5fc1e20a7041aa84d

Overall fund flow graph of the exploit (Generated with BlockSec’s explorer):

[2] 21,000,000 USDC

LP-USDC
9] 21,093 675 344156 USDC
[101900000USP . » LP-USP
21,000,048.009857 LP-USDC
1] 21,000,000 USDC 21,000,048.009857 LP-USDC

0x00

aAvaUSDC

[23] 21,010,500 USDC [6] 19,947,391.056295368006201 USP

[11] 69,756.91961 USDC.e

LP-.USDC.e [16] 83,175.344156 USDC

. [12] 96.810.192138 USDt . — [17] 6975691961 USDC.e

— i\ o
[13] 79815266923 USDTe NN T~
LPUSDTe — AN T [1]96810.192138 USDt
AN [— .
24.496.77955261821502284 BUSD \ ™ T
LP-BUSD ; T [19]79.815266923 USDT.e 7: Aave: Pool V3
26,540.19776038658828526 DALe | ,‘
\ 24,496.77955261821502284 BUSD
LP-DALe A
L 26,540.19776038658828526 DAILe
\ . /
T[22 19,047391.056295368006201 USP _
21,000,048.009857 LP-USDC
21,000,048.009857 LP-USDC 0xff69-OptimizedTransparentUpgradeableProxy
v
L. [4] 2.22289881059702654 PTP -
0x1f6b-OptimizedTi ToXy S

Tx Hash Blockchain explorer BlockSec's transaction Download fund flow

explorer graph

0x919266aa66d7c9a6af0 | hitps:/snowtrace.io/tx/0x9 | hitps://phalcon.blocksec.com W/iN
2deadb5effc1cc68ab7b878 | 19266aa66d7c9abaf02de | /tx/avax/0x919266aa66d7c9a | afET.png
90b52e5fc1e20a7041aa8 | adSeffc1cc68ab7b87890b | 6af02deadSeffc1cc68ab7b87
4d 52e5fc1e20a7041aa84d 890b52e5fc1e20a7041aa84d

https://snowtrace.io/tx/0x919266aa66d7c9a6af02dead5effc1cc68ab7b87890b52e5fc1e20a7041aa84d
https://snowtrace.io/tx/0x919266aa66d7c9a6af02dead5effc1cc68ab7b87890b52e5fc1e20a7041aa84d
https://snowtrace.io/tx/0x919266aa66d7c9a6af02dead5effc1cc68ab7b87890b52e5fc1e20a7041aa84d
https://snowtrace.io/tx/0x919266aa66d7c9a6af02dead5effc1cc68ab7b87890b52e5fc1e20a7041aa84d
https://phalcon.blocksec.com/tx/avax/0x919266aa66d7c9a6af02dead5effc1cc68ab7b87890b52e5fc1e20a7041aa84d
https://phalcon.blocksec.com/tx/avax/0x919266aa66d7c9a6af02dead5effc1cc68ab7b87890b52e5fc1e20a7041aa84d
https://phalcon.blocksec.com/tx/avax/0x919266aa66d7c9a6af02dead5effc1cc68ab7b87890b52e5fc1e20a7041aa84d
https://phalcon.blocksec.com/tx/avax/0x919266aa66d7c9a6af02dead5effc1cc68ab7b87890b52e5fc1e20a7041aa84d
https://i.imgur.com/YP2gfET.png
https://i.imgur.com/YP2gfET.png

Technical details on the execution of the exploit

The concept of the exploit, in layman terms, was to leverage a vulnerability in the Platypus
Finance smart contracts where the system logic has not implemented a proper account balance
checking mechanics, leading the exploiter to essentially be able to “withdraw deposits from a
bank and the bank proceeds the withdrawal, without noting that the deposits were used in a
collateralized loan that is still yet to be repaid”, and therefore lead to a double-spending

problem.

Below are the links containing the full logic for the smart contracts involved in the vulnerability:

(File 57 of 69)

Name Related functions Implementation address Block Explorer Proxy address
MasterPlatypusV | withdraw(), 0xc007f27b757a782c833c5 | hitps://snowtrace.io/ad | 0xfF6934aAC9C94E1
4.s0l emergencyWithdraw() 68f5851ae1dfeOebec7 dress/0xc007f27b757a | C39358D4fDCF70aeca
782c833c568f5851ae1 | 77DOABO
dfeQe6ecr#code
(File 1 of 18)
PlatypusTreasure | isSolvent() Oxbcd6796177ab8071f6a9%b | hitps://snowtrace.io/ad | 0x061da45081ace6ee
.sol a2c3e2e0301ee91befb dress/Oxbcd6796177ab | 622b9787b68aa70336
8071f6a9ba2c3e2e030 | 21438
1ee91befS#code

Note:

- “MasterPlatypusV4.sol” is responsible for the deposit and withdrawal of LP shares,
where rewards will be accrued to depositors over time. It has a similar functionality as
MasterChef from SushiSwap

- “PlatypusTreasure.sol” is responsible for the main logic of the USP over-collateralized
stablecoin system by Platypus Finance

Below is the LP withdrawal logic in the platform that is implemented in the platform’s frontend
application, and is the default process when users interact with the platform’s frontend to
request for a withdrawal for LP tokens:

544 /// @notice Withdraw LP tokens from MasterPlatypus.

545 /7// @notice Automatically harvest pending rewards and sends to user

546 /77 @param _pid the pool id

547 /77 @param _amount the amount to withdraw

548 function withdraw(uint256 _pid, uint256 _amount)

549 external

550 override

551 nonReentrant

552 whenNotPaused

553 returns (uint256 reward, uint256[] memory additionalRewards)

554 = {

555 (reward, additionalRewards) = _withdrawFor(_pid, msg.sender, msg.sender, _amount);
556

557 ~ if (address(platypusTreasure) != address(0x00)) {

558 (bool isSolvent,) = platypusTreasure.isSolvent(msg.sender, address(poolInfo[_pid].lpToken), true);
559 require(isSolvent, 'remaining amount exceeds collateral factor');

560 }

561 3

https://snowtrace.io/address/0xc007f27b757a782c833c568f5851ae1dfe0e6ec7#code
https://snowtrace.io/address/0xc007f27b757a782c833c568f5851ae1dfe0e6ec7#code
https://snowtrace.io/address/0xc007f27b757a782c833c568f5851ae1dfe0e6ec7#code
https://snowtrace.io/address/0xc007f27b757a782c833c568f5851ae1dfe0e6ec7#code
https://snowtrace.io/address/0xbcd6796177ab8071f6a9ba2c3e2e0301ee91bef5#code
https://snowtrace.io/address/0xbcd6796177ab8071f6a9ba2c3e2e0301ee91bef5#code
https://snowtrace.io/address/0xbcd6796177ab8071f6a9ba2c3e2e0301ee91bef5#code
https://snowtrace.io/address/0xbcd6796177ab8071f6a9ba2c3e2e0301ee91bef5#code

Below is the LP withdrawal logic in the platform’s system that poses a vulnerability for the exploit
to become viable:

576 /47 Bnotice Withdraw without caring about rewards. EMERGENCY ONLY.

577 22/ Bparam _pid the pool id

578 - function emergencyWithdraw(uint256 _pid) public nonReentrant {

579 PoolInfo storage pool = poolInfo[_pid];

580 UserInfo storage user = userInfo[_pid][msg.sender];

581

582 ~ if (address(platypusTreasure) != address(@x08)) {

583 (bool isSolwvent,) = platypusTreasure.isSolvent(msg.sender, address(poolInfo[_pid].lpToken), true);
584 reguire(isSolvent, 'remaining amount exceeds collateral factor');
585 1

586

587 /7 reset rewarder before we update lpSupply and sumOfFactors

588 IBoostedMultiRewarder rewarder = pool.rewarder;

589 ~ if Caddress(rewarder) != address(@)) {

590 rewarder.onPtpReward(msg.sender, user.amount, @, user.factor, @);
591 1

592

593 /7 SafeERCZ® is not needed as Asset will revert if transfer fails
594 pool . lpToken.transfer(address(msg. sender), user.amount);

595

596 /¢ update non-dialuting factor

597 pool . sumOfFactors -= user.factor;

598

599 user.amount = @;

600 user,factor = @;

0@l user, rewardDebt = @;

(7

ba3 emit EmergencyWithdraw(msg.sender, _pid, user.amount);

604 1

Both the above logic aims to achieve the purpose of allowing users to withdraw their LP tokens
from a LP staking contract. Platypus Finance allows users to deposit their stablecoins to
become a liquidity provider, which in exchange will receive LP tokens representing their share of
the deposits. As liquidity providers, they can further stake their LP into the platform to receive
rewards for liquidity provisioning.

The platform also has a feature to allow stakers to mint a new token called “USP” based on the
underlying value of the LP tokens they have staked to the platform. Hence, to obtain USP, the
user flow for example is: Deposit USDC -> Receive USDC-LP -> Deposit USDC-LP -> Receive
USP. The redemption (withdrawal) flow is therefore: Repay USP -> Redeem USDC-LP -> Repay
USDC-LP -> Redeem USDC.

For the two withdrawal logic screenshotted above, “function withdraw()” is what normally users
experience when they choose to redeem their USDC-LP. “function emergencyWithdraw()” is a
function that straightforwardly helps users to redeem their USDC-LP and forfeit any LP staking
reward incentives accrued in the platform. The platform never implemented the “function
emergencyWithdraw()” on the frontend user-interface, and never intended it to be part of the
user experience the platform was designed to serve.

As mentioned above, the vulnerability lies on an improper account balance checking mechanics
in “function emergencyWithdraw()”, which the logic first calls “platypusTreasure.isSolvent”, a
checker for solvency in the USP system, where it aims to make sure that the user has sufficient
collateral in the form of LP tokens to back the USP the user has minted (created), subsequent

the check, the logic goes on by transferring the deposited LP tokens to the user as part of the
redemption process:

582 - if (address(platypusTreasure) !'= address(Ox08)) {

583 (bool isSelvent,) = platypusTreasure.isSolvent(msg.sender, address(poolInfo[_pid].1lpToken), true);
584 reguire(isSolvent, 'remaining amount exceeds collateral factor');
5853 }

586

587 /7 reset rewarder before we update lpSupply and sumOfFactors

588 IBoostedMultiRewarder rewarder = pool.rewarder;

589 - if (addressCrewarder) != address{@)) {

590 rewarder.onPtpReward(msg.sender, user.amount, @, user.factor, ©);
591 }

592

593 A/ SafeERCZ28 is not needed as Asset will revert if transfer fails
594 pool.lpToken.transfer(address(msg.sender), user.amount);

Asnippet of “function emergencyWithdraw()” at MasterPlatypus

The “platypusTreasure.isSolvent” check will look up the amount of LP tokens a user has
deposited, if the deposited value of LP tokens exceeds the USP the user has minted, “isSolvent”
will be “True”.

This poses the problem that when a user calls “emergencyWithdraw”, the check logic (Line 583)
comes before the transfer logic (Line 594), which the check will pass, as there are no collateral
movements (transferred out), and the user will only become insolvent after the LP tokens have
transferred away from the platform to the user, because the LP tokens are no longer deposited
in the platform and therefore insufficient collateral posed by the user.

Hence, the “function emergencyWithdraw()” poses a vulnerability where a user can bypass the
solvency check to withdraw their LP tokens collateral while having a USP stablecoin
collateralized position opened, which was unfortunately taken advantage of by the attacker.

555 (reward, additionalRewards) = _withdrawFor(_pid, msg.sender, msg.sender, _amount);

556

557 = if (address(platypusTreasure) != address(@x00)) {

558 (bool isSolvent,) = platypusTreasure.isSolvent(msg.sender, address(poolInfo[_pid].1lpToken), true);
559 require(isSolvent, 'remaining amount exceeds collateral factor');

560 }

561 }

Asnippet of “function withdraw()” at MasterPlatypus

While in “function withdraw()”, the logic first withdraw the LP tokens for the user (Line 555), only
after the withdrawal will the logic check for the user’s solvency (Line 558), because the LP
tokens have already been transferred away, there are no LP tokens deposited, without collateral
posted the user is insolvent, which “isSolvent” will be “false”, and will not pass the “require”
checking (Line 559). Therefore, the transaction will revert (reverse) and throw an error. In the
EVM’s case, any function calls that cannot be fully executed, will result in an error which the
whole operation will be reverted, therefore nothing will happen as if the user did not withdraw
any LP tokens. There is no possibility for a partial execution where a user calls “function
withdraw()” and receives the LP tokens successfully while failing the solvency check
implemented.

Recall the user flow to obtain USP is: Deposit USDC -> Receive USDC-LP -> Deposit USDC-LP
-> Receive USP.
An example exploit on the platform could be through the following steps (assume no interest
payment for the flash loan):
1. Flash Loan borrow $10 million USDC
Deposit $10 million USDC to the platform
Receive $10 million worth of USDC-LP from the platform
Deposit $10 million worth of USDC-LP to the platform
Mint $9.5 million worth of USP (with an example LTV of 95%)
Call “function emergencyWithdraw()” to withdraw $10 million worth of USDC-LP
Repay $10 million worth of USDC-LP
Receive $10 million USDC
Repay flash loan of $10 million USDC

©ooNDOR WD

The person would end up with a balance of 9.5 million USP with no collateral backing locked in
the platform.

To perform all the above steps in three transactions, The attacker created their own smart
contract logic to interact with the platform’s smart contracts, and utilized Aave’s flash loan
feature to maximize the efficiency of the exploit where the platform’s pools can be drained in a
single transaction.

The attacker was able to repay the interest payments accrued from flash loaning USDC through
exchanging the maliciously obtained USP to USDC in a liquidity pool (AMM) operated by the
platforms’ liquidity providers. USP were also subsequently exchanged by the attacker to various
stablecoins such as USDC, USDT, etc on the platform.

Below the exact step by step play by the attacker in the exploit transaction where funds were
sent to Aave’s Pool contract:
1. Flash Loan borrow $21 million USDC
Deposit $21 million USDC to the platform
Receive $21 million worth of USDC-LP from the platform
Deposit $21 million worth of USDC-LP to the platform
Mint ~19.95 million USP
Call “function emergencyWithdraw()” to withdraw $21 million worth of USDC-LP
Repay $21 million worth of USDC-LP
Receive ~$20.95 million USDC
Swap 19.95 million USP to various stablecoin assets in the Main Pool of the platform
0. Transfer all stablecoin assets swapped with USP plus unexchanged USP to Aave’s Pool
contract, minus a small amount of USDC for flash loan interest payment
11. Repay flash loan of ~$21.01 million USDC (borrowed + interest payment)

S 0N WD

We have also conducted a simulation to show that the attacker’s contract manages to bypass
the normal solvency check flow in “function withdraw()” through the exploit transaction, and
created a USP borrowing position with zero collateral posted, which was not what the platform
intended to allow.

At block number 26344273, which is one block before the exploit, a simulation on Tenderly
calling “isSolvent()” at “PlatypusTreasure”, the contract responsible for the USP
over-collateralized borrowing system, shows that the attacker’s contract is solvent with a debt
amount of 0 USP:

= Overview B Contracts [Events < @ Gas Profile f3 RunonFork) © Re-Simulate {F Debugger

Simulated Transaction

rk: (@ Avalanche C-Chai

Block Overridi dex: 0 Timestamp: 1

INPUT OUTPUT

1 {

= Al < OpCede ® From ® To 7 Function [File (@ Contract Full Trace @

At block number 26344275, which is one block after the exploit, a simulation on Tenderly calling
“function isSolvent()” at “PlatypusTreasure”, the contract responsible for the USP
over-collateralized borrowing system, shows that the attacker’s contract is not solvent with a
debt amount of 19 million USP, with the collateral amount posted being 0 (shown at the bottom
of the screenshot):

= Overview B contracts [© State @ Gas Profiler Ty RunenFork) @ Re-Simulate i Debugger

Simulated Transaction

@ Avalanche C-Chain

4275 Index: 0 Timestamp: 11

INPUT QUTPUT

{ {

© OpCode @® From @& To [Function [} File @& Contract Full Trace (@

The simulation can be reproduced on Tenderly through inputting the block number mentioned
above mentioned to call 0x061da45081acebce1622b9787b68aa7033621438, the proxy address
of PlatypusTreasure, and using the following parameters:

Parameter name (type)

Parameter value

Note

_user (address)

0xf5d6007abb615654a95d33614a059
fa59bcff390

The address of the depositor (the
exploiting contract)

_token (address)

Oxaef735b1e7ecfaf8209ea466105858
17dc0a2e16

The token address of the collateral
(LP-USDC)

_open (bool)

true

The parameter used by “function
withdraw()” and “function
emergencyWithdraw()” to indicate
checking of the borrow limit of the
user.

To provide more information and perspectives of the exploit, below are the relevant links to the
analysis of the exploit made by independent blockchain security organizations:

Name

Link

BlockSec

htt;

//twitter.com/Block: Team/stat

1626429271614 1

BlockSec MetaSleuth

https://twitter.com/MetaSleuth/status/1626427932314054656

SlowMist https://twitter.com/SlowMist_Team/status/1626536522500702208
PeckShield https://twitter.com/peckshield/status/1626357011444269057
Omniscia https://twitter.com/Omniscia_sec/status/1626599363110703104
Omniscia

Note: as the attacker launched a series of three transactions that caused a total of 9 million loss,
the analysis listed above might not be directly reporting the exact exploit transaction where
~$380k was exploited and transferred to the Aave’s Pool, but rather with a focus on breaking
down how the overall exploit happened.

https://twitter.com/BlockSecTeam/status/1626429271614038016
https://twitter.com/MetaSleuth/status/1626427932314054656
https://twitter.com/SlowMist_Team/status/1626536522500702208
https://twitter.com/peckshield/status/1626357011444269057
https://twitter.com/Omniscia_sec/status/1626599363110703104
https://medium.com/@omniscia.io/platypus-finance-incident-post-mortem-7b71a0a47a5e

Our request for Aave’s help for asset recovery to our users
Based on the above analysis, we would like to request the Aave community for the courtesy to

recover the below quantity of ERC-20 tokens to the Platypus Team’s multisig address on
Avalanche C-Chain:

Name of the asset Ticker Contract address Quantity
TetherToken USDt 0x9702230A8Ea53601f5cD2dc00fDBc13d4dF4A8c7 96,810.192138
Tether USD (Bridged) USDT.e 0xc7198437980c041c805A1EDcbA50c1Ce5db95118 79,815.266923
USD Coin usDC 0xB97EF9Ef8734C71904D8002F8b6Bc66Dd9c48a6E | 83,175.344156
USD Coin (Bridged) uUsDC.e 0xA7D7079b0FEaD91F3e65f86E8915Cb59c1a4C664 | 69,756.91961
Dai Stablecoin (Bridged) DAl.e 0xd586E7F844cEa2F87f50152665BChc2C279D8d70 26,540.1977603
8658828526
Binance-Peg BUSD BUSD 0x9C9e5fD8bbc25984B178FACE6117Defa39d2db39 24,496.7795526
1821502284
USP Stablecoin USP 0xdaCDe03d7Ab4D81fEDdc3a20fAA89aBAc9072CE2 | 19,047,391.0562
95368006201

The amounts could be verified through the token transfer logs below:

Transaction hash Blockchain Explorer
0x919266aa66d7c9abaf02dead5effc1cc68ab7b87890 | hitps:/snowtrace.io/tx/0x9192 7 f02 ffc1
b52e5fc1e20a7041aa84d €68ab7b87890b52e5fc1e20a7041aa84d

Platypus Team’s multisig address on Avalanche C-Chain is:

Address Blockchain Explorer

0x068e297e8FF74115C9E1C4b5B83B700FdA5aFdEB https://snowtrace.io/address/0x068e297e8FF74115C9E1C4
b5B83B700FdA5aFdEB

https://snowtrace.io/tx/0x919266aa66d7c9a6af02dead5effc1cc68ab7b87890b52e5fc1e20a7041aa84d
https://snowtrace.io/tx/0x919266aa66d7c9a6af02dead5effc1cc68ab7b87890b52e5fc1e20a7041aa84d
https://snowtrace.io/address/0x068e297e8FF74115C9E1C4b5B83B700FdA5aFdEB
https://snowtrace.io/address/0x068e297e8FF74115C9E1C4b5B83B700FdA5aFdEB

