// HALBORN

Beanstalk -
Sunrise

Improvements
Smart Contract Security Audit

Prepared by: Halborn
Date of Engagement: November 13th, 2022 - Januar y 13th, 2023

Visit: Halborn.com


https://halborn.com

DOCUMENT REVISION HISTORY 3

CONTACTS 4
1 EXECUTIVE OVERVIEW 5
1.7 INTRODUCTION 6
1.2 AUDIT SUMMARY 6
1.3 TEST APPROACH & METHODOLOGY 6

RISK METHODOLOGY 7
1.4 SCOPE 9
2 ASSESSMENT SUMMARY & FINDINGS OVERVIEW 11
3 FINDINGS & TECH DETAILS 12

3.1 (HAL-01) MISSING CONTROL IN THE MORNINGAUCTION FUNCTION - LOW

14
Description 14
Code Location 14
Proof of Concept 16
Recommendation 18
Remediation Plan 19

3.2 (HAL-02) UNUSED STATE VARIABLES - INFORMATIONAL 20
Description 20
Code Location 20
Risk Level 20
Recommendation 20
Remediation Plan 21

4 MANUAL TESTING 21

4.1 Description 23



4.2 Results

24



DOCUMENT REVISION HISTORY

VERSION MODIFICATION DATE AUTHOR
0.1 Document Creation 11/23/2022 Kaan Caglan
0.2 Draft Review 12/05/2022 Roberto Reigada
0.3 Draft Review 12/07/2022 Gabi Urrutia
1.0 Remediation Plan 12/07/2022 Kaan Caglan
1.1 Remediation Plan Review | 12/08/2022 Roberto Reigada
1.2 Remediation Plan Review | 12/08/2022 Piotr Cielas
1.3 Remediation Plan Review | 12/08/2022 Gabi Urrutia
2.0 Scope Update 01/13/2023 Roberto Reigada
2.1 Scope Update Review 01/13/2023 Piotr Cielas
2.2 Scope Update Review 01/13/2023 Gabi Urrutia
2.3 Scope Update 02/24/2023 Roberto Reigada
2.4 Scope Update Review 02/27/2023 Ataberk Yavuzer
) Scope Update Review 02/28/2023 Piotr Cielas
) Scope Update Review 02/28/2023 Gabi Urrutia




CONTACTS

CONTACT COMPANY EMAIL
Rob Behnke Halborn Rob.Behnke@halborn.com
Steven Walbroehl Halborn Steven.Walbroehl@halborn.com
Gabi Urrutia Halborn Gabi.Urrutia@halborn.com
Piotr Cielas Halborn Piotr.Cielas@halborn.com
Roberto Reigada Halborn Roberto.Reigada@halborn.com
Ataberk Yavuzer Halborn Ataberk.Yavuzer@halborn.com



mailto:Rob.Behnke@halborn.com
mailto:Steven.Walbroehl@halborn.com
mailto:Gabi.Urrutia@halborn.com
mailto:Piotr.Cielas@halborn.com
mailto:Roberto.Reigada@halborn.com
mailto:Ataberk.Yavuzer@halborn.com

EXECUTIVE OVERVIEW




EXECUTIVE OVERVIEW

1.7 INTRODUCTION

Beanstalk is a permissionless fiat stablecoin protocol built on Ethereum
that uses credit instead of collateral to issue its native stablecoin.

Beanstalk engaged Halborn to conduct a security audit on their smart
contracts beginning on November 13th, 2022 and ending on December 5th,
2022. The security assessment was scoped to the smart contracts provided
in the GitHub repository BeanstalkFarms/Beanstalk/tree/bip-30.

New code was introduced by BeanStalk and audited by Halborn Jan 5th 2023.
No security issues were identified.

1.2 AUDIT SUMMARY

The team at Halborn was provided 2 weeks for the initial engagement and
assigned a full-time security engineer to audit the security of the smart
contract. An extra week was taken to audit the new updated code. The
security engineer is a blockchain and smart-contract security expert with
advanced penetration testing and smart-contract hacking skills, and deep
knowledge of multiple blockchain protocols.

The purpose of this audit is to:

®* Ensure that smart contract functions operate as intended

Identify potential security issues with the smart contracts

In summary, Halborn identified some security risks that were successfully
addressed by the Beanstalk team.

1.3 TEST APPROACH & METHODOLOGY

Halborn performed a combination of manual and automated security testing
to balance efficiency, timeliness, practicality, and accuracy in regard


https://github.com/BeanstalkFarms/Beanstalk/tree/bip-30
https://github.com/BeanstalkFarms/Beanstalk/tree/d67bbdb2319710270d73f14b343738eb60537460

EXECUTIVE OVERVIEW

to the scope of this audit. While manual testing is recommended to
uncover flaws in logic, process, and implementation; automated testing
techniques help enhance coverage of the code and can quickly identify
items that do not follow the security best practices. The following
phases and associated tools were used during the audit:

Research into architecture and purpose

® Smart contract manual code review and walkthrough

® Graphing out functionality and contract logic/connectivity/functions

(solgraph)

Manual assessment of use and safety for the critical Solidity

variables and functions in scope to identify any arithmetic related

vulnerability classes

® Manual testing by custom scripts

® Scanning of solidity files for vulnerabilities, security hot-spots
or bugs. (MythX)

® Static Analysis of security for scoped contract, and imported
functions. (Slither)

®* Testnet deployment (Brownie, Remix IDE)

RISK METHODOLOGY:

Vulnerabilities or issues observed by Halborn are ranked based on the
risk assessment methodology by measuring the LIKELIHOOD of a security
incident and the IMPACT should an incident occur. This framework
works for communicating the characteristics and impacts of technology
vulnerabilities. The quantitative model ensures repeatable and accurate
measurement while enabling users to see the underlying vulnerability
characteristics that were used to generate the Risk scores. For every
vulnerability, a risk level will be calculated on a scale of 5 to 1 with
5 being the highest likelihood or impact.

RISK SCALE - LIKELIHOOD

5 - Almost certain an incident will occur.
4 - High probability of an incident occurring.
3 - Potential of a security incident in the long term.



EXECUTIVE OVERVIEW

2 - Low probab
1 - Very unlik

RISK SCALE - I

- May cause
- May cause

5

4

3 - May cause
2 - May cause
1

May cause

The risk level
a value of 10

ility of an incident occurring.
ely issue will cause an incident.

MPACT

devastating and unrecoverable impact or loss.
a significant level of impact or loss.

a partial impact or loss to many.

temporary impact or loss.

minimal or un-noticeable impact.

is then calculated using a sum of these two values, creating
to 1 with 10 being the highest level of security risk.

CRITICAL

HIGH MEDIUM

10 - CRITICAL

9 - 8 - HIGH
7 - 6 - MEDIUM
5-4 - LOW
3-1-VERYL

OW AND INFORMATIONAL



EXECUTIVE OVERVIEW

1.4 SCOPE

IN-SCOPE:
The security assessment was scoped to the code changes performed in these
smart contracts since our last audit Commit ID:

Oracle.sol
SeasonFacet.sol

® Sun.sol

* Weather.sol

® FieldFacet.sol
FundraiserFacet.sol
® LibCurveOracle.sol
® LibTransfer.sol

® LibDibbler.sol

®* LibIncentive.sol

®* LibPRBMath.sol

Initial commit ID:
- 83469305e606013980cf285f115f550d0586718e

These were all the code changes done between 6699e071626a17283facc67242536037989%ecd91
and 83469305e606013980cf285f115f550d0586718e

Fixed commit ID:
- 1454d41f6b9%9e9b1f45e7662c67€90c31c694c8ea

New code was introduced by BeanStalk and audited by Halborn 5th of January,
2023:

- d67bbdb2319710270d73f14b343738eb60537460. The main changes include:

- Converting the if ladder on the morning auction to a binary search for
gas efficiency

- Fixing an incorrect change from the weather struct in appStorage.sol
- Various semantic and formatting changes.

No issues were found in d67bbdb2319710270d73f14b343738eb60537460.


https://github.com/BeanstalkFarms/Beanstalk/tree/83469305e606013980cf285f115f550d0586718e/protocol
https://github.com/BeanstalkFarms/Beanstalk/tree/bip-30
https://github.com/BeanstalkFarms/Beanstalk/tree/6699e071626a17283facc67242536037989ecd91/protocol
https://github.com/BeanstalkFarms/Beanstalk/tree/bip-30
https://github.com/BeanstalkFarms/Beanstalk/tree/1454d41f6b9e9b1f45e7662c67e90c31c694c8ea
https://github.com/BeanstalkFarms/Beanstalk/tree/d67bbdb2319710270d73f14b343738eb60537460
https://github.com/BeanstalkFarms/Beanstalk/tree/d67bbdb2319710270d73f14b343738eb60537460

EXECUTIVE OVERVIEW

Again, new code was introduced by BeanStalk and audited by Halborn 21st
of February, 2023:

- f37cb42809fb8dfc9a0f2891db1ad96a1b848a4c. The main changes are
included here.

No issues were found in f37cb42809fb8dfc9a0f2891db1ad96albh848a4c.

10


https://github.com/BeanstalkFarms/Beanstalk/tree/f37cb42809fb8dfc9a0f2891db1ad96a1b848a4c
https://beanstalk-farms.notion.site/Sunrise-Improvements-Changelog-8748af334adb4022bc54158b5ae9ef08
https://github.com/BeanstalkFarms/Beanstalk/tree/f37cb42809fb8dfc9a0f2891db1ad96a1b848a4c

EXECUTIVE OVERVIEW

IMPACT

2. ASSESSMENT SUMMARY & FINDINGS
OVERVIEW

CRITICAL

HIGH

0

(HAL-01)

LIKELIHOOD

11



EXECUTIVE OVERVIEW

SECURITY ANALYSIS

HAL@1 - MISSING CONTROL IN
MORNINGAUCTION FUNCTION

HAL@2 - UNUSED STATE VARIABLES

RISK LEVEL

REMEDIATION DATE

SOLVED - 12/07/2022

SOLVED - 12/07/2022

12



FINDINGS & TECH
DETAILS




FINDINGS & TECH DETAILS

3.1 (HAL-01) MISSING CONTROL IN THE
MORNINGAUCTION FUNCTION - LOW

Description:

In the LibDibbler.sol library, there is a function named morningAction
(). That function is responsible for returning the temperature value
scaled down through a Dutch Auction. The temperature increases over
the course of the first 5 minutes (25 blocks) of the season (up to the
current temperature). When uint256 delta = block.number.sub(s.season.
sunriseBlock); is calculated, the higher the delta the higher the value
returned by the function. That function is used in the beansToPodsAbovePeg
function later to increase the pods.

However, if s.w.yield is @ and delta is less than 24 the yield will
unintentionally be 1% higher.

Code Location:

Listing 1: LibDibbler.sol (Lines 89,90,147)

83 /// @dev function returns the weather scaled down

84 /// @notice based on the block delta

85 // precision level 1e6, as soil has 1e6 precision (1% = 1e6)
86 function morningAuction() internal view returns (uint256) {
87 AppStorage storage s = LibAppStorage.diamondStorage();
88 uint256 delta = block.number.sub(s.season.sunriseBlock);
89 if (delta > 24) { // check most likely case first

90 return uint256(s.w.yield).mul (DECIMALS);

91 } else if (delta == 1) {

92 return auctionMath (279415312704) ;

93 } else if (delta == 2) {

94 return auctionMath (409336034395) ;

95 } else if (delta == 3) {

96 return auctionMath (494912626048) ;

97 } else if (delta == 4) {

98 return auctionMath (558830625409) ;

99 } else if (delta == 5) {

100 return auctionMath (609868162219);

101 } else if (delta == 6) {

14



FINDINGS & TECH DETAILS

102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144

return auctionMath (652355825780) ;
} else if (delta == 7) {

return auctionMath (688751347100) ;
} else if (delta == 8) {

return auctionMath (720584687295) ;
} else if (delta == 9) {

return auctionMath (748873234524);
} else if (delta == 10) {

return auctionMath (774327938752) ;
} else if (delta == 11) {

return auctionMath (797465225780) ;
} else if (delta == 12) {

return auctionMath (818672068791) ;
} else if (delta == 13) {

return auctionMath (838245938114);
} else if (delta == 14) {

return auctionMath (856420437864) ;
} else if (delta == 15) {

return auctionMath (873382373802) ;
} else if (delta == 16) {

return auctionMath (889283474924);
} else if (delta == 17) {

return auctionMath (904248660443) ;
} else if (delta == 18) {

return auctionMath (918382006208) ;
} else if (delta == 19) {

return auctionMath (931771138485) ;
} else if (delta == 20) {

return auctionMath (944490527707) ;
} else if (delta == 21) {

return auctionMath (956603996980) ;
} else if (delta == 22) {

return auctionMath (968166659804) ;
} else if (delta == 23) {

return auctionMath (979226436102) ;
} else if (delta == 24) {

return auctionMath (989825252096) ;
} else {

return DECIMALS; //minimium 1% yield

/// @dev scales down weather, minimum 1e6

15



FINDINGS & TECH DETAILS

function auctionMath(uint256 a) private view returns (uint256)

AppStorage storage s = LibAppStorage.diamondStorage();
return uint256(s.w.yield).mulDiv(a,1e6).max(DECIMALS);

Proof of Concept:

With:
s.w.yield = @
beans = 100e18

Listing 2

contract_Test2.morningAuction(@, @) -> 1000000
contract_Test2.beansToPodsAbovePeg (100000000000000000000 ,
-> 101000000000000000000
contract_Test2.morningAuction(@, 1) -> 1000000
contract_Test2.beansToPodsAbovePeg (100000000000000000000 ,
-> 107000000000000000000
contract_Test2.morningAuction (@, 2) -> 1000000
contract_Test2.beansToPodsAbovePeg (100000000000000000000 ,
-> 107000000000000000000
contract_Test2.morningAuction(@, 3) -> 1000000
contract_Test2.beansToPodsAbovePeg (100000000000000000000 ,
-> 101000000000000000000
contract_Test2.morningAuction (0, 4) -> 1000000
contract_Test2.beansToPodsAbovePeg (100000000000000000000 ,
-> 101000000000000000000
contract_Test2.morningAuction(@, 5) -> 1000000
contract_Test2.beansToPodsAbovePeg (100000000000000000000 ,
-> 107000000000000000000
contract_Test2.morningAuction(@, 6) -> 1000000
contract_Test2.beansToPodsAbovePeg (100000000000000000000 ,
-> 107000000000000000000
contract_Test2.morningAuction (@, 7) -> 1000000
contract_Test2.beansToPodsAbovePeg (100000000000000000000 ,
-> 101000000000000000000
contract_Test2.morningAuction (@, 8) -> 1000000
contract_Test2.beansToPodsAbovePeg (100000000000000000000 ,
-> 107000000000000000000
contract_Test2.morningAuction (@, 9) -> 1000000

1000000)

1000000)

1000000)

1000000)

1000000)

1000000)

1000000)

1000000)

1000000)

16



FINDINGS & TECH DETAILS

contract_Test2.beansToPodsAbovePeg (100000000000000000000 ,
-> 107000000000000000000
contract_Test2.morningAuction(@, 10) -> 1000000
contract_Test2.beansToPodsAbovePeg (100000000000000000000 ,
-> 101000000000000000000
contract_Test2.morningAuction(@, 11) -> 1000000
contract_Test2.beansToPodsAbovePeg (100000000000000000000 ,
-> 101000000000000000000
contract_Test2.morningAuction (@, 12) -> 1000000
contract_Test2.beansToPodsAbovePeg (100000000000000000000 ,
-> 107000000000000000000
contract_Test2.morningAuction(@, 13) -> 1000000
contract_Test2.beansToPodsAbovePeg (100000000000000000000 ,
-> 107000000000000000000
contract_Test2.morningAuction (@, 14) -> 1000000
contract_Test2.beansToPodsAbovePeg (100000000000000000000 ,
-> 101000000000000000000
contract_Test2.morningAuction (@, 15) -> 1000000
contract_Test2.beansToPodsAbovePeg (100000000000000000000 ,
-> 107000000000000000000
contract_Test2.morningAuction(@, 16) -> 1000000
contract_Test2.beansToPodsAbovePeg (100000000000000000000 ,
-> 107000000000000000000
contract_Test2.morningAuction (@, 17) -> 1000000
contract_Test2.beansToPodsAbovePeg (100000000000000000000 ,
-> 101000000000000000000
contract_Test2.morningAuction (@, 18) -> 1000000
contract_Test2.beansToPodsAbovePeg (100000000000000000000 ,
-> 107000000000000000000
contract_Test2.morningAuction(@, 19) -> 1000000
contract_Test2.beansToPodsAbovePeg (100000000000000000000 ,
-> 107000000000000000000
contract_Test2.morningAuction(@, 20) -> 1000000
contract_Test2.beansToPodsAbovePeg (100000000000000000000 ,
-> 101000000000000000000
contract_Test2.morningAuction (@, 21) -> 1000000
contract_Test2.beansToPodsAbovePeg (100000000000000000000 ,
-> 107000000000000000000
contract_Test2.morningAuction(@, 22) -> 1000000
contract_Test2.beansToPodsAbovePeg (100000000000000000000 ,
-> 107000000000000000000
contract_Test2.morningAuction(@, 23) -> 1000000
contract_Test2.beansToPodsAbovePeg (100000000000000000000 ,
-> 101000000000000000000

1000000)

1000000)

1000000)

1000000)

1000000)

1000000)

1000000)

1000000)

1000000)

1000000)

1000000)

1000000)

1000000)

1000000)

1000000)

17



FINDINGS & TECH DETAILS

contract_Test2.morningAuction (@, 24) -> 1000000

contract_Test2.beansToPodsAbovePeg (100000000000000000000, 1000000)
L, -> 101000000000000000000

contract_Test2.morningAuction(@, 25) -> 0

contract_Test2.beansToPodsAbovePeg (100000000000000000000, @) ->
L, 100000000000000000000

contract_Test2.morningAuction(@, 26) -> @

contract_Test2.beansToPodsAbovePeg (100000000000000000000, @) ->
L, 100000000000000000000

contract_Test2.morningAuction (@, 27) -> 0

contract_Test2.beansToPodsAbovePeg (100000000000000000000, Q) ->
L, 100000000000000000000

contract_Test2.morningAuction (@, 28) -> 0

contract_Test2.beansToPodsAbovePeg (100000000000000000000, @) ->
L, 100000000000000000000

contract_Test2.morningAuction(@, 29) -> @

contract_Test2.beansToPodsAbovePeg (100000000000000000000, @) ->
L, 100000000000000000000

1,00E+20

Recommendation:

It is recommended to add a special case to handle when s.w.yield is @ and
delta > 24.



FINDINGS & TECH DETAILS

Remediation Plan:

SOLVED: The Beanstalk team fixed the issue by adding a @ control to
s.w.field variable in auctionMath function.

146 /// @dev scales down temperature, minimum 1e6 (unless

L, temperature is 0%)

147 function auctionMath(uint256 a) private view returns (uint256)
L {

148 AppStorage storage s = LibAppStorage.diamondStorage();

149 uint256 _yield = s.w.yield;

150 if(_yield == @) return 0;

Fixed Commit ID: 1454d41f6b9%e9b1f45e7662c67e90c31c694c8ea


https://github.com/BeanstalkFarms/Beanstalk/tree/1454d41f6b9e9b1f45e7662c67e90c31c694c8ea

FINDINGS & TECH DETAILS

3.2 (HAL-02) UNUSED STATE
VARIABLES - INFORMATIONAL

Description:

The DECIMAL state variable within the FieldFacet.sol contract is not
used. Similarly, the situation also occurs in the LibDibbler library
with the constants:

- MAX_BLOCK_ELAPSED

- DENOMINATOR

- SCALE

Code Location:

23 uint128 private constant DECIMAL = 1e6;
24 3}
Risk Level:

Likelihood - 1
Impact - 1

Recommendation:

If a state variable will not be used, it is recommended to remove it to
save gas.

20



FINDINGS & TECH DETAILS

Remediation Plan:

SOLVED: The Beanstalk team solved the issue.

Fixed Commit ID: 1454d41f6b9%9e9b1f45e7662c67e90c31c694c8ea

21


https://github.com/BeanstalkFarms/Beanstalk/tree/1454d41f6b9e9b1f45e7662c67e90c31c694c8ea

MANUAL TESTING




MANUAL TESTING

4.1 Description

Halborn performed manual tests on all the different facets of BeanStalk,
looking for business logic flaws and security vulnerabilities.

During those manual tests, the following areas were carefully reviewed:

1. Sunrise Rewards

23



MANUAL TESTING

4.2 Results

Beanstalk was overpaying for the sunrise() function calls, so it was
proposed to change the base incentive for Farmers to call the sunrise()
function. The solution implemented seeks to minimize the number of Beans
that Beanstalk needs to pay for the sunrise() call and computes an on-chain
estimation of the below formula while adding sufficient tunable parameters
to properly account for estimation error and potential manipulation.

The cost to execute a sunrise() transaction in Beans is:

gasUsed * (baseGasFee + priorityFee)* beanEthPrice

Overall, Beanstalk would strictly mint less than or equal the current
Beans that it does currently. Also, the exponential increase in Beans
paid for calling the sunrise() function late should remain, switching to

blockNumber instead of timestamp.

An example of the rewards given can be seen below:

Listing 5
Calling -> contract_SeasonFacet.sunrise({'from': userl})
Reward is: 10000000 when blocksLate: @
Calling -> contract_SeasonFacet.sunrise({'from': userl1})
Reward is: 11268249 when blocksLate: 1
Calling -> contract_SeasonFacet.sunrise({'from': userl})
Reward is: 12697344 when blocksLate: 2
Calling -> contract_SeasonFacet.sunrise({'from': userl1})
Reward is: 14307685 when blockslLate: 3
Calling -> contract_SeasonFacet.sunrise({'from': userl})
Reward is: 16122252 when blocksLate: 4
Calling -> contract_SeasonFacet.sunrise({'from': userl1})
Reward is: 18166924 when blocksLate: 5
Calling -> contract_SeasonFacet.sunrise({'from': userl})
Reward is: 20470979 when blocksLate: 6
Calling -> contract_SeasonFacet.sunrise({'from': useri})
Reward is: 23067178 when blocksLate: 7
Calling -> contract_SeasonFacet.sunrise({'from': userl})
Reward is: 25992581 when blocksLate: 8
Calling -> contract_SeasonFacet.sunrise({'from': userl})

Reward is: 29289213 when blocksLate: 9

24



MANUAL TESTING

Calling ->
Reward is:
Calling ->
Reward is:
Calling ->
Reward is:
Calling ->
Reward is:
Calling ->
Reward is:
Calling ->
Reward is:
Calling ->
Reward is:
Calling ->
Reward is:
Calling ->
Reward is:
Calling ->
Reward is:
Calling ->
Reward is:
Calling ->
Reward is:
Calling ->
Reward is:
Calling ->
Reward is:
Calling ->
Reward is:
Calling ->
Reward is:
Calling ->
Reward is:
Calling ->
Reward is:
Calling ->
Reward is:
Calling ->
Reward is:
Calling ->
Reward is:
Calling ->
Reward is:

contract_SeasonFacet.sunrise({'from
33003750 when blocksLate: 10
contract_SeasonFacet.sunrise({'from
37189548 when blocksLate: 11
contract_SeasonFacet.sunrise({'from
41906066 when blocksLate: 12
contract_SeasonFacet.sunrise({'from
47220699 when blocksLate: 13
contract_SeasonFacet.sunrise({'from
53209258 when blocksLate: 14
contract_SeasonFacet.sunrise({'from
59957117 when blocksLate: 15
contract_SeasonFacet.sunrise({'from
67560429 when blocksLate: 16
contract_SeasonFacet.sunrise({'from
76130197 when blocksLate: 17
contract_SeasonFacet.sunrise({'from
85784950 when blocksLate: 18
contract_SeasonFacet.sunrise({'from
96663815 when blocksLate: 19
contract_SeasonFacet.sunrise({'from
108921815 when blocksLate: 20
contract_SeasonFacet.sunrise({'from
122733509 when blocksLate: 21
contract_SeasonFacet.sunrise({'from
138304230 when blocksLate: 22
contract_SeasonFacet.sunrise({'from
155843255 when blocksLate: 23
contract_SeasonFacet.sunrise({'from
175605779 when blockslLate: 24
contract_SeasonFacet.sunrise({'from
197882195 when blocksLate: 25
contract_SeasonFacet.sunrise({'from
197882195 when blocksLate: 26
contract_SeasonFacet.sunrise({'from
197882195 when blocksLate: 27
contract_SeasonFacet.sunrise({'from
197882195 when blockslLate: 28
contract_SeasonFacet.sunrise({'from
197882195 when blocksLate: 29
contract_SeasonFacet.sunrise({'from
197882195 when blockslLate: 30
contract_SeasonFacet.sunrise({'from
197882195 when blocksLate: 31

userl})

userl})

userl?l})

userl})

userl?l})

userl})

userl?l})

userl})

userll})

userl})

userl})

userl?l})

userl})

userll})

userl})

userl?l})

userl})

userl?})

userl})

userl})

userl?l})

userl})

25



MANUAL TESTING

Calling -> contract_SeasonFacet.sunrise({'from': userl1})
Reward is: 197882195 when blocksLate: 32
Calling -> contract_SeasonFacet.sunrise({'from': useri})
Reward is: 197882195 when blocksLate: 33
Calling -> contract_SeasonFacet.sunrise({'from': userl1})
Reward is: 197882195 when blocksLate: 34
Calling -> contract_SeasonFacet.sunrise({'from': userl})
Reward is: 197882195 when blocksLate: 35
Calling -> contract_SeasonFacet.sunrise({'from': userl1})
Reward is: 197882195 when blocksLate: 36
Calling -> contract_SeasonFacet.sunrise({'from': userl})
Reward is: 197882195 when blocksLate: 37
Calling -> contract_SeasonFacet.sunrise({'from': userl1})
Reward is: 197882195 when blocksLate: 38
Calling -> contract_SeasonFacet.sunrise({'from': userl})

Reward is: 197882195 when blockslLate: 39

300000000

250000000

200000000

& 150000000

100000000

50000000




THANK YOU FOR CHOOSING

// HALBORN




	DOCUMENT REVISION HISTORY
	CONTACTS
	EXECUTIVE OVERVIEW
	INTRODUCTION
	AUDIT SUMMARY
	TEST APPROACH & METHODOLOGY
	RISK METHODOLOGY

	SCOPE

	ASSESSMENT SUMMARY & FINDINGS OVERVIEW
	FINDINGS & TECH DETAILS
	
	Description
	Code Location
	Proof of Concept
	Recommendation
	Remediation Plan

	
	Description
	Code Location
	Risk Level
	Recommendation
	Remediation Plan


	MANUAL TESTING
	Description
	Results


